Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -74,20 +74,19 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
74 |
)
|
75 |
annos.setdefault(img_id, []).append(line)
|
76 |
|
77 |
-
# ---
|
78 |
-
|
|
|
79 |
for dp, _, files in os.walk(root):
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
if not img_src:
|
84 |
-
raise FileNotFoundError(f"No images under {root}")
|
85 |
|
86 |
-
# --- copy images + write
|
87 |
-
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
88 |
for fname, img_id in name_to_id.items():
|
89 |
-
src_path =
|
90 |
-
if not
|
|
|
91 |
continue
|
92 |
shutil.copy(src_path, os.path.join(flat_img, fname))
|
93 |
with open(os.path.join(flat_lbl, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
|
@@ -102,7 +101,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
102 |
n = len(all_files)
|
103 |
n_train = max(1, int(n * split_ratios[0]))
|
104 |
n_valid = max(1, int(n * split_ratios[1]))
|
105 |
-
# ensure at least 1 for
|
106 |
n_valid = min(n_valid, n - n_train - 1)
|
107 |
|
108 |
splits = {
|
@@ -118,12 +117,10 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
118 |
os.makedirs(out_img_dir, exist_ok=True)
|
119 |
os.makedirs(out_lbl_dir, exist_ok=True)
|
120 |
for fn in files:
|
121 |
-
# move image
|
122 |
shutil.move(
|
123 |
os.path.join(flat_img, fn),
|
124 |
os.path.join(out_img_dir, fn)
|
125 |
)
|
126 |
-
# move corresponding .txt label
|
127 |
lbl_fn = fn.rsplit('.',1)[0] + ".txt"
|
128 |
shutil.move(
|
129 |
os.path.join(flat_lbl, lbl_fn),
|
@@ -138,7 +135,9 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
138 |
before, after = [], []
|
139 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
140 |
for fname in sample:
|
141 |
-
src =
|
|
|
|
|
142 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
143 |
|
144 |
seg_vis = img.copy()
|
@@ -174,7 +173,7 @@ def upload_and_train_detection(
|
|
174 |
rf = Roboflow(api_key=api_key)
|
175 |
ws = rf.workspace()
|
176 |
|
177 |
-
# get
|
178 |
try:
|
179 |
proj = ws.project(project_slug)
|
180 |
except:
|
@@ -185,7 +184,7 @@ def upload_and_train_detection(
|
|
185 |
project_license=project_license
|
186 |
)
|
187 |
|
188 |
-
# upload the folder
|
189 |
ws.upload_dataset(
|
190 |
dataset_path,
|
191 |
project_slug,
|
|
|
74 |
)
|
75 |
annos.setdefault(img_id, []).append(line)
|
76 |
|
77 |
+
# --- map each file_name to its actual path on disk
|
78 |
+
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
79 |
+
file_paths = {}
|
80 |
for dp, _, files in os.walk(root):
|
81 |
+
for f in files:
|
82 |
+
if f in name_to_id:
|
83 |
+
file_paths[f] = os.path.join(dp, f)
|
|
|
|
|
84 |
|
85 |
+
# --- copy images + write flat_labels
|
|
|
86 |
for fname, img_id in name_to_id.items():
|
87 |
+
src_path = file_paths.get(fname)
|
88 |
+
if not src_path:
|
89 |
+
# skip if we couldn't find this image under root
|
90 |
continue
|
91 |
shutil.copy(src_path, os.path.join(flat_img, fname))
|
92 |
with open(os.path.join(flat_lbl, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
|
|
|
101 |
n = len(all_files)
|
102 |
n_train = max(1, int(n * split_ratios[0]))
|
103 |
n_valid = max(1, int(n * split_ratios[1]))
|
104 |
+
# ensure at least 1 left for test
|
105 |
n_valid = min(n_valid, n - n_train - 1)
|
106 |
|
107 |
splits = {
|
|
|
117 |
os.makedirs(out_img_dir, exist_ok=True)
|
118 |
os.makedirs(out_lbl_dir, exist_ok=True)
|
119 |
for fn in files:
|
|
|
120 |
shutil.move(
|
121 |
os.path.join(flat_img, fn),
|
122 |
os.path.join(out_img_dir, fn)
|
123 |
)
|
|
|
124 |
lbl_fn = fn.rsplit('.',1)[0] + ".txt"
|
125 |
shutil.move(
|
126 |
os.path.join(flat_lbl, lbl_fn),
|
|
|
135 |
before, after = [], []
|
136 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
137 |
for fname in sample:
|
138 |
+
src = file_paths.get(fname)
|
139 |
+
if not src:
|
140 |
+
continue
|
141 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
142 |
|
143 |
seg_vis = img.copy()
|
|
|
173 |
rf = Roboflow(api_key=api_key)
|
174 |
ws = rf.workspace()
|
175 |
|
176 |
+
# get‐or‐create your detection project
|
177 |
try:
|
178 |
proj = ws.project(project_slug)
|
179 |
except:
|
|
|
184 |
project_license=project_license
|
185 |
)
|
186 |
|
187 |
+
# upload the folder with proper train/valid/test
|
188 |
ws.upload_dataset(
|
189 |
dataset_path,
|
190 |
project_slug,
|