Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -25,29 +25,22 @@ def parse_roboflow_url(url: str):
|
|
25 |
|
26 |
|
27 |
def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1, 0.1)):
|
|
|
28 |
rf = Roboflow(api_key=api_key)
|
29 |
ws, proj_name, ver = parse_roboflow_url(dataset_url)
|
30 |
version_obj = rf.workspace(ws).project(proj_name).version(ver)
|
31 |
dataset = version_obj.download("coco-segmentation")
|
32 |
root = dataset.location
|
33 |
|
34 |
-
# find
|
35 |
ann_file = None
|
36 |
for dp, _, files in os.walk(root):
|
37 |
for f in files:
|
38 |
-
if
|
39 |
ann_file = os.path.join(dp, f)
|
40 |
break
|
41 |
if ann_file:
|
42 |
break
|
43 |
-
if not ann_file:
|
44 |
-
for dp, _, files in os.walk(root):
|
45 |
-
for f in files:
|
46 |
-
if f.lower().endswith('.json'):
|
47 |
-
ann_file = os.path.join(dp, f)
|
48 |
-
break
|
49 |
-
if ann_file:
|
50 |
-
break
|
51 |
if not ann_file:
|
52 |
raise FileNotFoundError(f"No JSON annotations under {root}")
|
53 |
|
@@ -56,14 +49,14 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
56 |
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
|
57 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
58 |
|
59 |
-
#
|
60 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
61 |
-
|
62 |
-
|
63 |
-
os.makedirs(
|
64 |
-
os.makedirs(
|
65 |
|
66 |
-
# convert segmentation
|
67 |
annos = {}
|
68 |
for anno in coco['annotations']:
|
69 |
img_id = anno['image_id']
|
@@ -72,7 +65,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
72 |
x_min, x_max = min(xs), max(xs)
|
73 |
y_min, y_max = min(ys), max(ys)
|
74 |
w, h = x_max - x_min, y_max - y_min
|
75 |
-
cx, cy = x_min + w
|
76 |
|
77 |
iw, ih = images_info[img_id]['width'], images_info[img_id]['height']
|
78 |
line = (
|
@@ -81,56 +74,61 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
81 |
)
|
82 |
annos.setdefault(img_id, []).append(line)
|
83 |
|
84 |
-
# locate
|
85 |
-
|
86 |
for dp, _, files in os.walk(root):
|
87 |
-
if any(f.lower().endswith(('.jpg',
|
88 |
-
|
89 |
break
|
90 |
-
if not
|
91 |
-
raise FileNotFoundError(f"No images
|
92 |
|
93 |
-
# copy images + write flat labels
|
94 |
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
95 |
for fname, img_id in name_to_id.items():
|
96 |
-
|
97 |
-
if not os.path.isfile(
|
98 |
continue
|
99 |
-
shutil.copy(
|
100 |
-
with open(os.path.join(
|
101 |
lf.write("\n".join(annos.get(img_id, [])))
|
102 |
|
103 |
-
# split into train/valid/test
|
104 |
-
|
105 |
-
random.shuffle(
|
106 |
-
n = len(
|
107 |
-
n_train = int(n * split_ratios[0])
|
108 |
-
n_valid = int(n * split_ratios[1])
|
|
|
|
|
109 |
splits = {
|
110 |
-
"train":
|
111 |
-
"valid":
|
112 |
-
"test":
|
113 |
}
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
os.makedirs(img_dir, exist_ok=True)
|
119 |
os.makedirs(lbl_dir, exist_ok=True)
|
120 |
-
for
|
121 |
-
shutil.move(os.path.join(
|
122 |
-
|
123 |
-
|
124 |
|
125 |
-
#
|
126 |
-
shutil.rmtree(
|
127 |
-
shutil.rmtree(
|
128 |
|
129 |
-
# build before/after
|
130 |
before, after = [], []
|
131 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
132 |
for fname in sample:
|
133 |
-
src = os.path.join(
|
134 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
135 |
|
136 |
seg_vis = img.copy()
|
@@ -147,7 +145,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1,
|
|
147 |
w0, h0 = int(wnorm * iw), int(hnorm * ih)
|
148 |
x0 = int(cxn * iw - w0 / 2)
|
149 |
y0 = int(cyn * ih - h0 / 2)
|
150 |
-
cv2.rectangle(box_vis, (x0, y0), (x0
|
151 |
|
152 |
before.append(Image.fromarray(seg_vis))
|
153 |
after.append(Image.fromarray(box_vis))
|
@@ -166,7 +164,7 @@ def upload_and_train_detection(
|
|
166 |
rf = Roboflow(api_key=api_key)
|
167 |
ws = rf.workspace()
|
168 |
|
169 |
-
# get
|
170 |
try:
|
171 |
proj = ws.project(project_slug)
|
172 |
except Exception:
|
@@ -177,7 +175,7 @@ def upload_and_train_detection(
|
|
177 |
project_license=project_license
|
178 |
)
|
179 |
|
180 |
-
# upload
|
181 |
ws.upload_dataset(
|
182 |
dataset_path,
|
183 |
project_slug,
|
@@ -185,16 +183,16 @@ def upload_and_train_detection(
|
|
185 |
project_type=project_type
|
186 |
)
|
187 |
|
188 |
-
# create new version
|
189 |
version_num = proj.generate_version(settings={
|
190 |
"augmentation": {},
|
191 |
"preprocessing": {},
|
192 |
})
|
193 |
|
194 |
-
# enqueue training (now
|
195 |
proj.version(str(version_num)).train()
|
196 |
|
197 |
-
# return endpoint
|
198 |
m = proj.version(str(version_num)).model
|
199 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
200 |
|
|
|
25 |
|
26 |
|
27 |
def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1, 0.1)):
|
28 |
+
# --- download segmentation export
|
29 |
rf = Roboflow(api_key=api_key)
|
30 |
ws, proj_name, ver = parse_roboflow_url(dataset_url)
|
31 |
version_obj = rf.workspace(ws).project(proj_name).version(ver)
|
32 |
dataset = version_obj.download("coco-segmentation")
|
33 |
root = dataset.location
|
34 |
|
35 |
+
# --- find the COCO JSON
|
36 |
ann_file = None
|
37 |
for dp, _, files in os.walk(root):
|
38 |
for f in files:
|
39 |
+
if f.lower().endswith('.json'):
|
40 |
ann_file = os.path.join(dp, f)
|
41 |
break
|
42 |
if ann_file:
|
43 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if not ann_file:
|
45 |
raise FileNotFoundError(f"No JSON annotations under {root}")
|
46 |
|
|
|
49 |
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
|
50 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
51 |
|
52 |
+
# --- make a flat YOLO folder
|
53 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
54 |
+
flat_img = os.path.join(out_root, "flat_images")
|
55 |
+
flat_lbl = os.path.join(out_root, "flat_labels")
|
56 |
+
os.makedirs(flat_img, exist_ok=True)
|
57 |
+
os.makedirs(flat_lbl, exist_ok=True)
|
58 |
|
59 |
+
# --- convert each segmentation to a YOLO bbox line
|
60 |
annos = {}
|
61 |
for anno in coco['annotations']:
|
62 |
img_id = anno['image_id']
|
|
|
65 |
x_min, x_max = min(xs), max(xs)
|
66 |
y_min, y_max = min(ys), max(ys)
|
67 |
w, h = x_max - x_min, y_max - y_min
|
68 |
+
cx, cy = x_min + w/2, y_min + h/2
|
69 |
|
70 |
iw, ih = images_info[img_id]['width'], images_info[img_id]['height']
|
71 |
line = (
|
|
|
74 |
)
|
75 |
annos.setdefault(img_id, []).append(line)
|
76 |
|
77 |
+
# --- locate the single images folder
|
78 |
+
img_src = None
|
79 |
for dp, _, files in os.walk(root):
|
80 |
+
if any(f.lower().endswith(('.jpg','.png','.jpeg')) for f in files):
|
81 |
+
img_src = dp
|
82 |
break
|
83 |
+
if not img_src:
|
84 |
+
raise FileNotFoundError(f"No images folder in {root}")
|
85 |
|
86 |
+
# --- copy images + write flat labels
|
87 |
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
88 |
for fname, img_id in name_to_id.items():
|
89 |
+
src_path = os.path.join(img_src, fname)
|
90 |
+
if not os.path.isfile(src_path):
|
91 |
continue
|
92 |
+
shutil.copy(src_path, os.path.join(flat_img, fname))
|
93 |
+
with open(os.path.join(flat_lbl, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
|
94 |
lf.write("\n".join(annos.get(img_id, [])))
|
95 |
|
96 |
+
# --- split filenames into train/valid/test lists
|
97 |
+
all_files = sorted([f for f in os.listdir(flat_img) if f.lower().endswith(('.jpg','.png','.jpeg'))])
|
98 |
+
random.shuffle(all_files)
|
99 |
+
n = len(all_files)
|
100 |
+
n_train = max(1, int(n * split_ratios[0]))
|
101 |
+
n_valid = max(1, int(n * split_ratios[1]))
|
102 |
+
# ensure we don’t overshoot
|
103 |
+
n_valid = min(n_valid, n - n_train - 1)
|
104 |
splits = {
|
105 |
+
"train": all_files[:n_train],
|
106 |
+
"valid": all_files[n_train:n_train+n_valid],
|
107 |
+
"test": all_files[n_train+n_valid:]
|
108 |
}
|
109 |
|
110 |
+
# --- create Roboflow‑friendly structure:
|
111 |
+
# out_root/images/{train,valid,test}
|
112 |
+
# out_root/labels/{train,valid,test}
|
113 |
+
for split, files in splits.items():
|
114 |
+
img_dir = os.path.join(out_root, "images", split)
|
115 |
+
lbl_dir = os.path.join(out_root, "labels", split)
|
116 |
os.makedirs(img_dir, exist_ok=True)
|
117 |
os.makedirs(lbl_dir, exist_ok=True)
|
118 |
+
for fn in files:
|
119 |
+
shutil.move(os.path.join(flat_img, fn), os.path.join(img_dir, fn))
|
120 |
+
shutil.move(os.path.join(flat_lbl, fn.rsplit('.',1)[0] + ".txt"),
|
121 |
+
os.path.join(lbl_dir, fn.rsplit('.',1)[0] + ".txt"))
|
122 |
|
123 |
+
# --- clean up flats
|
124 |
+
shutil.rmtree(flat_img)
|
125 |
+
shutil.rmtree(flat_lbl)
|
126 |
|
127 |
+
# --- build a few before/after previews
|
128 |
before, after = [], []
|
129 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
130 |
for fname in sample:
|
131 |
+
src = os.path.join(img_src, fname)
|
132 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
133 |
|
134 |
seg_vis = img.copy()
|
|
|
145 |
w0, h0 = int(wnorm * iw), int(hnorm * ih)
|
146 |
x0 = int(cxn * iw - w0 / 2)
|
147 |
y0 = int(cyn * ih - h0 / 2)
|
148 |
+
cv2.rectangle(box_vis, (x0, y0), (x0+w0, y0+h0), (0, 255, 0), 2)
|
149 |
|
150 |
before.append(Image.fromarray(seg_vis))
|
151 |
after.append(Image.fromarray(box_vis))
|
|
|
164 |
rf = Roboflow(api_key=api_key)
|
165 |
ws = rf.workspace()
|
166 |
|
167 |
+
# get-or-create your detection project
|
168 |
try:
|
169 |
proj = ws.project(project_slug)
|
170 |
except Exception:
|
|
|
175 |
project_license=project_license
|
176 |
)
|
177 |
|
178 |
+
# upload the properly‑split folder
|
179 |
ws.upload_dataset(
|
180 |
dataset_path,
|
181 |
project_slug,
|
|
|
183 |
project_type=project_type
|
184 |
)
|
185 |
|
186 |
+
# create a new version
|
187 |
version_num = proj.generate_version(settings={
|
188 |
"augmentation": {},
|
189 |
"preprocessing": {},
|
190 |
})
|
191 |
|
192 |
+
# enqueue training (now finds train/valid/test)
|
193 |
proj.version(str(version_num)).train()
|
194 |
|
195 |
+
# return the hosted endpoint URL
|
196 |
m = proj.version(str(version_num)).model
|
197 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
198 |
|