Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import random
|
5 |
+
import shutil
|
6 |
+
import tempfile
|
7 |
+
from urllib.parse import urlparse
|
8 |
+
from PIL import Image
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import gradio as gr
|
12 |
+
from roboflow import Roboflow
|
13 |
+
|
14 |
+
|
15 |
+
def parse_roboflow_url(url):
|
16 |
+
"""Extract workspace, project name, and version from a Roboflow URL."""
|
17 |
+
parsed = urlparse(url)
|
18 |
+
parts = parsed.path.strip('/').split('/')
|
19 |
+
# Expect at least [workspace, project, ..., version]
|
20 |
+
workspace = parts[0]
|
21 |
+
project = parts[1]
|
22 |
+
try:
|
23 |
+
version = int(parts[-1])
|
24 |
+
except ValueError:
|
25 |
+
version = int(parts[-2])
|
26 |
+
return workspace, project, version
|
27 |
+
|
28 |
+
|
29 |
+
def convert_seg_to_bbox(api_key, dataset_url):
|
30 |
+
# Initialize Roboflow client
|
31 |
+
rf = Roboflow(api_key=api_key)
|
32 |
+
workspace, project_name, version = parse_roboflow_url(dataset_url)
|
33 |
+
project = rf.workspace(workspace).project(project_name)
|
34 |
+
version_obj = project.version(version)
|
35 |
+
|
36 |
+
# Download the segmentation dataset in COCO format
|
37 |
+
dataset = version_obj.download("coco-segmentation")
|
38 |
+
root = dataset.location # root of downloaded dataset
|
39 |
+
|
40 |
+
# Load COCO train annotations
|
41 |
+
ann_dir = os.path.join(root, "coco-annotations")
|
42 |
+
ann_file = os.path.join(ann_dir, "train.json")
|
43 |
+
with open(ann_file, 'r') as f:
|
44 |
+
coco = json.load(f)
|
45 |
+
images_info = {img['id']: img for img in coco['images']}
|
46 |
+
|
47 |
+
# Map original category IDs to contiguous YOLO class indices
|
48 |
+
categories = coco.get('categories', [])
|
49 |
+
cat_ids = sorted(cat['id'] for cat in categories)
|
50 |
+
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
51 |
+
|
52 |
+
# Prepare output directories for YOLOv8 dataset
|
53 |
+
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
54 |
+
img_out = os.path.join(out_root, "images")
|
55 |
+
lbl_out = os.path.join(out_root, "labels")
|
56 |
+
os.makedirs(img_out, exist_ok=True)
|
57 |
+
os.makedirs(lbl_out, exist_ok=True)
|
58 |
+
|
59 |
+
# Build YOLO annotation strings grouped by image
|
60 |
+
annos = {}
|
61 |
+
for anno in coco['annotations']:
|
62 |
+
img_id = anno['image_id']
|
63 |
+
poly = anno['segmentation'][0]
|
64 |
+
xs = poly[0::2]
|
65 |
+
ys = poly[1::2]
|
66 |
+
x_min, x_max = min(xs), max(xs)
|
67 |
+
y_min, y_max = min(ys), max(ys)
|
68 |
+
width = x_max - x_min
|
69 |
+
height = y_max - y_min
|
70 |
+
cx = x_min + width / 2
|
71 |
+
cy = y_min + height / 2
|
72 |
+
info = images_info[img_id]
|
73 |
+
img_w, img_h = info['width'], info['height']
|
74 |
+
cxn = cx / img_w
|
75 |
+
cyn = cy / img_h
|
76 |
+
wnorm = width / img_w
|
77 |
+
hnorm = height / img_h
|
78 |
+
cls_idx = id_to_index[anno['category_id']]
|
79 |
+
line = f"{cls_idx} {cxn:.6f} {cyn:.6f} {wnorm:.6f} {hnorm:.6f}"
|
80 |
+
annos.setdefault(img_id, []).append(line)
|
81 |
+
|
82 |
+
# Determine train images directory
|
83 |
+
train_img_dir = os.path.join(root, "train", "images")
|
84 |
+
if not os.path.isdir(train_img_dir):
|
85 |
+
train_img_dir = os.path.join(root, "train")
|
86 |
+
|
87 |
+
# Map filenames to image IDs
|
88 |
+
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
89 |
+
|
90 |
+
# Copy images and write YOLO label files
|
91 |
+
for fname, img_id in name_to_id.items():
|
92 |
+
src_img = os.path.join(train_img_dir, fname)
|
93 |
+
if not os.path.isfile(src_img):
|
94 |
+
continue
|
95 |
+
dst_img = os.path.join(img_out, fname)
|
96 |
+
shutil.copy(src_img, dst_img)
|
97 |
+
lbl_path = os.path.join(lbl_out, os.path.splitext(fname)[0] + ".txt")
|
98 |
+
with open(lbl_path, 'w') as lf:
|
99 |
+
for line in annos.get(img_id, []):
|
100 |
+
lf.write(line + '\n')
|
101 |
+
|
102 |
+
# Prepare before/after example galleries
|
103 |
+
before_imgs, after_imgs = [], []
|
104 |
+
example_files = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
105 |
+
|
106 |
+
for fname in example_files:
|
107 |
+
src_img = os.path.join(train_img_dir, fname)
|
108 |
+
img = cv2.cvtColor(cv2.imread(src_img), cv2.COLOR_BGR2RGB)
|
109 |
+
|
110 |
+
# Overlay segmentation polygons
|
111 |
+
seg_vis = img.copy()
|
112 |
+
img_id = name_to_id[fname]
|
113 |
+
for anno in coco['annotations']:
|
114 |
+
if anno['image_id'] != img_id:
|
115 |
+
continue
|
116 |
+
poly = anno['segmentation'][0]
|
117 |
+
pts = np.array(poly, dtype=np.int32).reshape(-1, 2)
|
118 |
+
cv2.polylines(seg_vis, [pts], True, (255, 0, 0), 2)
|
119 |
+
|
120 |
+
# Overlay bounding boxes
|
121 |
+
box_vis = img.copy()
|
122 |
+
for line in annos.get(img_id, []):
|
123 |
+
_, cxn, cyn, wnorm, hnorm = line.split()
|
124 |
+
cxn, cyn, wnorm, hnorm = map(float, (cxn, cyn, wnorm, hnorm))
|
125 |
+
iw, ih = images_info[img_id]['width'], images_info[img_id]['height']
|
126 |
+
w0 = int(wnorm * iw)
|
127 |
+
h0 = int(hnorm * ih)
|
128 |
+
x0 = int(cxn * iw - w0/2)
|
129 |
+
y0 = int(cyn * ih - h0/2)
|
130 |
+
cv2.rectangle(box_vis, (x0, y0), (x0 + w0, y0 + h0), (0, 255, 0), 2)
|
131 |
+
|
132 |
+
before_imgs.append(Image.fromarray(seg_vis))
|
133 |
+
after_imgs.append(Image.fromarray(box_vis))
|
134 |
+
|
135 |
+
return before_imgs, after_imgs
|
136 |
+
|
137 |
+
|
138 |
+
# Build Gradio interface
|
139 |
+
with gr.Blocks() as app:
|
140 |
+
gr.Markdown("# Segmentation → YOLOv8 Converter")
|
141 |
+
api_input = gr.Textbox(label="Roboflow API Key", type="password")
|
142 |
+
url_input = gr.Textbox(label="Roboflow Dataset URL (Segmentation)")
|
143 |
+
run_btn = gr.Button("Convert")
|
144 |
+
before_gallery = gr.Gallery(label="Before (Segmentation)").style(grid=[5], height="auto")
|
145 |
+
after_gallery = gr.Gallery(label="After (Bounding Boxes)").style(grid=[5], height="auto")
|
146 |
+
run_btn.click(convert_seg_to_bbox, inputs=[api_input, url_input], outputs=[before_gallery, after_gallery])
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
app.launch()
|