Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ from roboflow import Roboflow
|
|
13 |
|
14 |
|
15 |
def parse_roboflow_url(url: str):
|
16 |
-
"""Extract workspace, project name, and version from a Roboflow URL."""
|
17 |
parsed = urlparse(url)
|
18 |
parts = parsed.path.strip('/').split('/')
|
19 |
workspace = parts[0]
|
@@ -26,19 +25,13 @@ def parse_roboflow_url(url: str):
|
|
26 |
|
27 |
|
28 |
def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
29 |
-
"""
|
30 |
-
1) Download a segmentation dataset
|
31 |
-
2) Convert all masks → YOLO‐style bboxes
|
32 |
-
3) Write out a temp YOLO dataset and return its path
|
33 |
-
4) Return before/after galleries + the dataset path + an auto slug
|
34 |
-
"""
|
35 |
rf = Roboflow(api_key=api_key)
|
36 |
ws, proj_name, ver = parse_roboflow_url(dataset_url)
|
37 |
version_obj = rf.workspace(ws).project(proj_name).version(ver)
|
38 |
dataset = version_obj.download("coco-segmentation")
|
39 |
root = dataset.location
|
40 |
|
41 |
-
#
|
42 |
ann_file = None
|
43 |
for dp, _, files in os.walk(root):
|
44 |
for f in files:
|
@@ -58,20 +51,19 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
58 |
if not ann_file:
|
59 |
raise FileNotFoundError(f"No JSON annotations under {root}")
|
60 |
|
61 |
-
|
62 |
-
coco = json.load(f)
|
63 |
images_info = {img['id']: img for img in coco['images']}
|
64 |
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
|
65 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
66 |
|
67 |
-
#
|
68 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
69 |
img_out = os.path.join(out_root, "images")
|
70 |
lbl_out = os.path.join(out_root, "labels")
|
71 |
os.makedirs(img_out, exist_ok=True)
|
72 |
os.makedirs(lbl_out, exist_ok=True)
|
73 |
|
74 |
-
#
|
75 |
annos = {}
|
76 |
for anno in coco['annotations']:
|
77 |
img_id = anno['image_id']
|
@@ -89,54 +81,51 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
89 |
)
|
90 |
annos.setdefault(img_id, []).append(line)
|
91 |
|
92 |
-
#
|
93 |
train_img_dir = None
|
94 |
for dp, _, files in os.walk(root):
|
95 |
-
if any(f.lower().endswith(('.jpg',
|
96 |
train_img_dir = dp
|
97 |
break
|
98 |
if not train_img_dir:
|
99 |
raise FileNotFoundError(f"No images under {root}")
|
100 |
|
101 |
-
#
|
102 |
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
103 |
for fname, img_id in name_to_id.items():
|
104 |
src = os.path.join(train_img_dir, fname)
|
105 |
if not os.path.isfile(src):
|
106 |
continue
|
107 |
shutil.copy(src, os.path.join(img_out, fname))
|
108 |
-
with open(os.path.join(lbl_out, fname.rsplit('.',
|
109 |
lf.write("\n".join(annos.get(img_id, [])))
|
110 |
|
111 |
-
#
|
112 |
before, after = [], []
|
113 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
114 |
for fname in sample:
|
115 |
src = os.path.join(train_img_dir, fname)
|
116 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
117 |
|
118 |
-
# segmentation overlay
|
119 |
seg_vis = img.copy()
|
120 |
for anno in coco['annotations']:
|
121 |
if anno['image_id'] != name_to_id[fname]:
|
122 |
continue
|
123 |
-
pts = np.array(anno['segmentation'][0], np.int32).reshape(-1,
|
124 |
-
cv2.polylines(seg_vis, [pts], True, (255,
|
125 |
|
126 |
-
# bbox overlay
|
127 |
box_vis = img.copy()
|
128 |
for line in annos.get(name_to_id[fname], []):
|
129 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
130 |
iw, ih = images_info[name_to_id[fname]]['width'], images_info[name_to_id[fname]]['height']
|
131 |
-
w0, h0 = int(wnorm
|
132 |
-
x0 = int(cxn
|
133 |
-
y0 = int(cyn
|
134 |
-
cv2.rectangle(box_vis, (x0,
|
135 |
|
136 |
before.append(Image.fromarray(seg_vis))
|
137 |
after.append(Image.fromarray(box_vis))
|
138 |
|
139 |
-
# auto-generated detection project slug
|
140 |
project_slug = f"{proj_name}-detection"
|
141 |
return before, after, out_root, project_slug
|
142 |
|
@@ -148,20 +137,13 @@ def upload_and_train_detection(
|
|
148 |
project_license: str = "MIT",
|
149 |
project_type: str = "object-detection"
|
150 |
):
|
151 |
-
"""
|
152 |
-
1) (re)create a Detection project
|
153 |
-
2) upload the YOLO dataset
|
154 |
-
3) generate & train a new version
|
155 |
-
4) return the hosted endpoint URL
|
156 |
-
"""
|
157 |
rf = Roboflow(api_key=api_key)
|
158 |
ws = rf.workspace()
|
159 |
|
160 |
-
#
|
161 |
try:
|
162 |
proj = ws.project(project_slug)
|
163 |
except Exception:
|
164 |
-
# annotation must be provided as the 2nd positional arg
|
165 |
proj = ws.create_project(
|
166 |
project_slug,
|
167 |
annotation=project_type,
|
@@ -169,54 +151,48 @@ def upload_and_train_detection(
|
|
169 |
project_license=project_license
|
170 |
)
|
171 |
|
172 |
-
#
|
173 |
-
ws.upload_dataset(
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
)
|
179 |
|
180 |
-
#
|
181 |
-
version_num = proj.generate_version()
|
182 |
-
# 4) train it
|
183 |
proj.version(str(version_num)).train()
|
184 |
|
185 |
-
#
|
186 |
m = proj.version(str(version_num)).model
|
187 |
-
|
188 |
-
return endpoint
|
189 |
|
190 |
|
191 |
-
# --- Gradio
|
192 |
with gr.Blocks() as app:
|
193 |
-
gr.Markdown("## 🔄
|
194 |
|
195 |
-
# single API key input
|
196 |
api_input = gr.Textbox(label="Roboflow API Key", type="password")
|
197 |
url_input = gr.Textbox(label="Segmentation Dataset URL")
|
198 |
run_btn = gr.Button("Convert to BBoxes")
|
199 |
-
before_g = gr.Gallery(
|
200 |
-
after_g = gr.Gallery(
|
201 |
-
|
202 |
-
|
203 |
-
dataset_path_state = gr.Textbox(visible=False)
|
204 |
-
project_slug_state = gr.Textbox(visible=False)
|
205 |
|
206 |
run_btn.click(
|
207 |
-
|
208 |
inputs=[api_input, url_input],
|
209 |
-
outputs=[before_g, after_g,
|
210 |
)
|
211 |
|
212 |
gr.Markdown("## 🚀 Upload & Train Detection Model")
|
213 |
-
train_btn
|
214 |
-
|
215 |
|
216 |
train_btn.click(
|
217 |
-
|
218 |
-
inputs=[api_input,
|
219 |
-
outputs=[
|
220 |
)
|
221 |
|
222 |
if __name__ == "__main__":
|
|
|
13 |
|
14 |
|
15 |
def parse_roboflow_url(url: str):
|
|
|
16 |
parsed = urlparse(url)
|
17 |
parts = parsed.path.strip('/').split('/')
|
18 |
workspace = parts[0]
|
|
|
25 |
|
26 |
|
27 |
def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
rf = Roboflow(api_key=api_key)
|
29 |
ws, proj_name, ver = parse_roboflow_url(dataset_url)
|
30 |
version_obj = rf.workspace(ws).project(proj_name).version(ver)
|
31 |
dataset = version_obj.download("coco-segmentation")
|
32 |
root = dataset.location
|
33 |
|
34 |
+
# find annotation JSON
|
35 |
ann_file = None
|
36 |
for dp, _, files in os.walk(root):
|
37 |
for f in files:
|
|
|
51 |
if not ann_file:
|
52 |
raise FileNotFoundError(f"No JSON annotations under {root}")
|
53 |
|
54 |
+
coco = json.load(open(ann_file, 'r'))
|
|
|
55 |
images_info = {img['id']: img for img in coco['images']}
|
56 |
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
|
57 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
58 |
|
59 |
+
# prepare YOLO dirs
|
60 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
61 |
img_out = os.path.join(out_root, "images")
|
62 |
lbl_out = os.path.join(out_root, "labels")
|
63 |
os.makedirs(img_out, exist_ok=True)
|
64 |
os.makedirs(lbl_out, exist_ok=True)
|
65 |
|
66 |
+
# convert seg→bbox
|
67 |
annos = {}
|
68 |
for anno in coco['annotations']:
|
69 |
img_id = anno['image_id']
|
|
|
81 |
)
|
82 |
annos.setdefault(img_id, []).append(line)
|
83 |
|
84 |
+
# locate images
|
85 |
train_img_dir = None
|
86 |
for dp, _, files in os.walk(root):
|
87 |
+
if any(f.lower().endswith(('.jpg','.png','.jpeg')) for f in files):
|
88 |
train_img_dir = dp
|
89 |
break
|
90 |
if not train_img_dir:
|
91 |
raise FileNotFoundError(f"No images under {root}")
|
92 |
|
93 |
+
# copy images + write labels
|
94 |
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
|
95 |
for fname, img_id in name_to_id.items():
|
96 |
src = os.path.join(train_img_dir, fname)
|
97 |
if not os.path.isfile(src):
|
98 |
continue
|
99 |
shutil.copy(src, os.path.join(img_out, fname))
|
100 |
+
with open(os.path.join(lbl_out, fname.rsplit('.',1)[0]+".txt"), 'w') as lf:
|
101 |
lf.write("\n".join(annos.get(img_id, [])))
|
102 |
|
103 |
+
# build before/after samples
|
104 |
before, after = [], []
|
105 |
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
|
106 |
for fname in sample:
|
107 |
src = os.path.join(train_img_dir, fname)
|
108 |
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
|
109 |
|
|
|
110 |
seg_vis = img.copy()
|
111 |
for anno in coco['annotations']:
|
112 |
if anno['image_id'] != name_to_id[fname]:
|
113 |
continue
|
114 |
+
pts = np.array(anno['segmentation'][0], np.int32).reshape(-1,2)
|
115 |
+
cv2.polylines(seg_vis, [pts], True, (255,0,0), 2)
|
116 |
|
|
|
117 |
box_vis = img.copy()
|
118 |
for line in annos.get(name_to_id[fname], []):
|
119 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
120 |
iw, ih = images_info[name_to_id[fname]]['width'], images_info[name_to_id[fname]]['height']
|
121 |
+
w0, h0 = int(wnorm*iw), int(hnorm*ih)
|
122 |
+
x0 = int(cxn*iw - w0/2)
|
123 |
+
y0 = int(cyn*ih - h0/2)
|
124 |
+
cv2.rectangle(box_vis, (x0,y0), (x0+w0,y0+h0), (0,255,0), 2)
|
125 |
|
126 |
before.append(Image.fromarray(seg_vis))
|
127 |
after.append(Image.fromarray(box_vis))
|
128 |
|
|
|
129 |
project_slug = f"{proj_name}-detection"
|
130 |
return before, after, out_root, project_slug
|
131 |
|
|
|
137 |
project_license: str = "MIT",
|
138 |
project_type: str = "object-detection"
|
139 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
rf = Roboflow(api_key=api_key)
|
141 |
ws = rf.workspace()
|
142 |
|
143 |
+
# get-or-create detection project
|
144 |
try:
|
145 |
proj = ws.project(project_slug)
|
146 |
except Exception:
|
|
|
147 |
proj = ws.create_project(
|
148 |
project_slug,
|
149 |
annotation=project_type,
|
|
|
151 |
project_license=project_license
|
152 |
)
|
153 |
|
154 |
+
# upload the YOLO dataset
|
155 |
+
ws.upload_dataset(dataset_path, project_slug,
|
156 |
+
project_license=project_license,
|
157 |
+
project_type=project_type)
|
158 |
+
|
159 |
+
# generate a new version (must pass settings arg—even if empty)
|
160 |
+
version_num = proj.generate_version(settings={})
|
161 |
|
162 |
+
# train it
|
|
|
|
|
163 |
proj.version(str(version_num)).train()
|
164 |
|
165 |
+
# return hosted endpoint
|
166 |
m = proj.version(str(version_num)).model
|
167 |
+
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
|
|
168 |
|
169 |
|
170 |
+
# --- Gradio UI ---
|
171 |
with gr.Blocks() as app:
|
172 |
+
gr.Markdown("## 🔄 Seg→BBox + Auto‐Upload/Train")
|
173 |
|
|
|
174 |
api_input = gr.Textbox(label="Roboflow API Key", type="password")
|
175 |
url_input = gr.Textbox(label="Segmentation Dataset URL")
|
176 |
run_btn = gr.Button("Convert to BBoxes")
|
177 |
+
before_g = gr.Gallery(columns=5, label="Before")
|
178 |
+
after_g = gr.Gallery(columns=5, label="After")
|
179 |
+
ds_state = gr.Textbox(visible=False)
|
180 |
+
slug_state = gr.Textbox(visible=False)
|
|
|
|
|
181 |
|
182 |
run_btn.click(
|
183 |
+
convert_seg_to_bbox,
|
184 |
inputs=[api_input, url_input],
|
185 |
+
outputs=[before_g, after_g, ds_state, slug_state]
|
186 |
)
|
187 |
|
188 |
gr.Markdown("## 🚀 Upload & Train Detection Model")
|
189 |
+
train_btn = gr.Button("Upload & Train")
|
190 |
+
url_out = gr.Textbox(label="Hosted Model Endpoint URL")
|
191 |
|
192 |
train_btn.click(
|
193 |
+
upload_and_train_detection,
|
194 |
+
inputs=[api_input, slug_state, ds_state],
|
195 |
+
outputs=[url_out]
|
196 |
)
|
197 |
|
198 |
if __name__ == "__main__":
|