Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import cv2
|
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
import gradio as gr
|
12 |
-
from roboflow import Roboflow
|
13 |
|
14 |
|
15 |
def parse_roboflow_url(url: str):
|
@@ -29,7 +29,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
29 |
"""
|
30 |
Download a segmentation dataset from Roboflow,
|
31 |
convert masks → YOLOv8 bboxes,
|
32 |
-
and return (before, after) galleries + local YOLO
|
33 |
"""
|
34 |
rf = Roboflow(api_key=api_key)
|
35 |
ws_name, seg_proj_slug, ver = parse_roboflow_url(dataset_url)
|
@@ -37,7 +37,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
37 |
dataset = version_obj.download("coco-segmentation")
|
38 |
root = dataset.location
|
39 |
|
40 |
-
#
|
41 |
ann_file = None
|
42 |
for dp, _, files in os.walk(root):
|
43 |
for f in files:
|
@@ -62,14 +62,14 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
62 |
cat_ids = sorted(c["id"] for c in coco.get("categories", []))
|
63 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
64 |
|
65 |
-
#
|
66 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
67 |
img_out = os.path.join(out_root, "images")
|
68 |
lbl_out = os.path.join(out_root, "labels")
|
69 |
os.makedirs(img_out, exist_ok=True)
|
70 |
os.makedirs(lbl_out, exist_ok=True)
|
71 |
|
72 |
-
#
|
73 |
annos = {}
|
74 |
for a in coco["annotations"]:
|
75 |
pid = a["image_id"]
|
@@ -82,7 +82,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
82 |
line = f"{id_to_index[a['category_id']]} {cx/iw:.6f} {cy/ih:.6f} {w/iw:.6f} {h/ih:.6f}"
|
83 |
annos.setdefault(pid, []).append(line)
|
84 |
|
85 |
-
#
|
86 |
img_dir = None
|
87 |
for dp, _, files in os.walk(root):
|
88 |
if any(f.lower().endswith((".jpg", ".png", ".jpeg")) for f in files):
|
@@ -100,7 +100,7 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
100 |
with open(os.path.join(lbl_out, fname.rsplit(".", 1)[0] + ".txt"), "w") as lf:
|
101 |
lf.write("\n".join(annos.get(pid, [])))
|
102 |
|
103 |
-
#
|
104 |
before, after = [], []
|
105 |
sample = random.sample(list(fname2id.keys()), min(5, len(fname2id)))
|
106 |
for fn in sample:
|
@@ -118,14 +118,14 @@ def convert_seg_to_bbox(api_key: str, dataset_url: str):
|
|
118 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
119 |
iw, ih = images_info[fname2id[fn]]["width"], images_info[fname2id[fn]]["height"]
|
120 |
w0, h0 = int(wnorm * iw), int(hnorm * ih)
|
121 |
-
x0 = int(cxn * iw - w0
|
122 |
-
y0 = int(cyn * ih - h0
|
123 |
cv2.rectangle(box_vis, (x0, y0), (x0 + w0, y0 + h0), (0, 255, 0), 2)
|
124 |
|
125 |
before.append(Image.fromarray(seg_vis))
|
126 |
after.append(Image.fromarray(box_vis))
|
127 |
|
128 |
-
# auto‐slug for detection project
|
129 |
detection_slug = f"{seg_proj_slug}-detection"
|
130 |
return before, after, out_root, detection_slug
|
131 |
|
@@ -138,17 +138,17 @@ def upload_and_train_detection(api_key: str, project_slug: str, dataset_path: st
|
|
138 |
rf = Roboflow(api_key=api_key)
|
139 |
ws = rf.workspace()
|
140 |
|
141 |
-
#
|
142 |
try:
|
143 |
proj = ws.project(project_slug)
|
144 |
-
except
|
145 |
proj = ws.create_project(
|
146 |
project_name=project_slug,
|
147 |
project_type="object-detection",
|
148 |
project_license="MIT"
|
149 |
)
|
150 |
|
151 |
-
#
|
152 |
ws.upload_dataset(
|
153 |
dataset_path,
|
154 |
proj.id,
|
@@ -159,17 +159,14 @@ def upload_and_train_detection(api_key: str, project_slug: str, dataset_path: st
|
|
159 |
num_retries=0
|
160 |
)
|
161 |
|
162 |
-
#
|
163 |
-
new_v = proj.generate_version(settings={
|
164 |
-
"preprocessing": {},
|
165 |
-
"augmentation": {}
|
166 |
-
})
|
167 |
|
168 |
-
#
|
169 |
version = proj.version(new_v)
|
170 |
version.train(speed="fast")
|
171 |
|
172 |
-
#
|
173 |
m = version.model
|
174 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
175 |
|
|
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
import gradio as gr
|
12 |
+
from roboflow import Roboflow
|
13 |
|
14 |
|
15 |
def parse_roboflow_url(url: str):
|
|
|
29 |
"""
|
30 |
Download a segmentation dataset from Roboflow,
|
31 |
convert masks → YOLOv8 bboxes,
|
32 |
+
and return (before, after) galleries + local YOLO dataset path + auto slug.
|
33 |
"""
|
34 |
rf = Roboflow(api_key=api_key)
|
35 |
ws_name, seg_proj_slug, ver = parse_roboflow_url(dataset_url)
|
|
|
37 |
dataset = version_obj.download("coco-segmentation")
|
38 |
root = dataset.location
|
39 |
|
40 |
+
# find the annotation JSON
|
41 |
ann_file = None
|
42 |
for dp, _, files in os.walk(root):
|
43 |
for f in files:
|
|
|
62 |
cat_ids = sorted(c["id"] for c in coco.get("categories", []))
|
63 |
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
|
64 |
|
65 |
+
# prepare YOLOv8 folders
|
66 |
out_root = tempfile.mkdtemp(prefix="yolov8_")
|
67 |
img_out = os.path.join(out_root, "images")
|
68 |
lbl_out = os.path.join(out_root, "labels")
|
69 |
os.makedirs(img_out, exist_ok=True)
|
70 |
os.makedirs(lbl_out, exist_ok=True)
|
71 |
|
72 |
+
# convert seg → bbox labels
|
73 |
annos = {}
|
74 |
for a in coco["annotations"]:
|
75 |
pid = a["image_id"]
|
|
|
82 |
line = f"{id_to_index[a['category_id']]} {cx/iw:.6f} {cy/ih:.6f} {w/iw:.6f} {h/ih:.6f}"
|
83 |
annos.setdefault(pid, []).append(line)
|
84 |
|
85 |
+
# locate images and write labels
|
86 |
img_dir = None
|
87 |
for dp, _, files in os.walk(root):
|
88 |
if any(f.lower().endswith((".jpg", ".png", ".jpeg")) for f in files):
|
|
|
100 |
with open(os.path.join(lbl_out, fname.rsplit(".", 1)[0] + ".txt"), "w") as lf:
|
101 |
lf.write("\n".join(annos.get(pid, [])))
|
102 |
|
103 |
+
# build preview galleries
|
104 |
before, after = [], []
|
105 |
sample = random.sample(list(fname2id.keys()), min(5, len(fname2id)))
|
106 |
for fn in sample:
|
|
|
118 |
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
|
119 |
iw, ih = images_info[fname2id[fn]]["width"], images_info[fname2id[fn]]["height"]
|
120 |
w0, h0 = int(wnorm * iw), int(hnorm * ih)
|
121 |
+
x0 = int(cxn * iw - w0/2)
|
122 |
+
y0 = int(cyn * ih - h0/2)
|
123 |
cv2.rectangle(box_vis, (x0, y0), (x0 + w0, y0 + h0), (0, 255, 0), 2)
|
124 |
|
125 |
before.append(Image.fromarray(seg_vis))
|
126 |
after.append(Image.fromarray(box_vis))
|
127 |
|
128 |
+
# auto‐slug for the detection project
|
129 |
detection_slug = f"{seg_proj_slug}-detection"
|
130 |
return before, after, out_root, detection_slug
|
131 |
|
|
|
138 |
rf = Roboflow(api_key=api_key)
|
139 |
ws = rf.workspace()
|
140 |
|
141 |
+
# get or create the detection project
|
142 |
try:
|
143 |
proj = ws.project(project_slug)
|
144 |
+
except Exception:
|
145 |
proj = ws.create_project(
|
146 |
project_name=project_slug,
|
147 |
project_type="object-detection",
|
148 |
project_license="MIT"
|
149 |
)
|
150 |
|
151 |
+
# upload the dataset
|
152 |
ws.upload_dataset(
|
153 |
dataset_path,
|
154 |
proj.id,
|
|
|
159 |
num_retries=0
|
160 |
)
|
161 |
|
162 |
+
# generate a new version
|
163 |
+
new_v = proj.generate_version(settings={"preprocessing": {}, "augmentation": {}})
|
|
|
|
|
|
|
164 |
|
165 |
+
# train (fast)
|
166 |
version = proj.version(new_v)
|
167 |
version.train(speed="fast")
|
168 |
|
169 |
+
# return the hosted inference URL
|
170 |
m = version.model
|
171 |
return f"{m['base_url']}{m['id']}?api_key={api_key}"
|
172 |
|