File size: 7,401 Bytes
63eb207
 
 
 
 
abc9620
9503f8d
3b9517f
 
 
 
63eb207
 
 
 
 
 
abc9620
63eb207
edd3af7
63eb207
 
 
 
 
 
 
 
9503f8d
3b9517f
9503f8d
63eb207
abc9620
63eb207
 
 
 
 
 
 
 
 
 
 
 
 
9503f8d
63eb207
 
 
 
 
 
 
 
edd3af7
63eb207
9503f8d
3b9517f
63eb207
 
abc9620
3b9517f
 
 
 
 
 
 
 
 
 
 
 
 
 
abc9620
 
 
63eb207
9503f8d
90903c1
9503f8d
63eb207
3b9517f
 
abc9620
 
63eb207
 
abc9620
 
edd3af7
63eb207
 
abc9620
63eb207
 
abc9620
edd3af7
3b9517f
 
abc9620
 
63eb207
abc9620
3b9517f
 
edd3af7
90903c1
 
 
3b9517f
90903c1
3b9517f
 
63eb207
9503f8d
3b9517f
9503f8d
63eb207
abc9620
 
 
 
 
 
9503f8d
 
63eb207
 
9503f8d
3b9517f
 
 
 
 
 
 
 
 
 
 
 
 
edd3af7
 
 
3b9517f
 
 
 
 
 
 
 
 
 
9503f8d
3b9517f
9503f8d
3b9517f
abc9620
edd3af7
3b9517f
 
edd3af7
3b9517f
63eb207
9503f8d
abc9620
9503f8d
63eb207
 
 
3b9517f
abc9620
63eb207
abc9620
 
 
 
 
 
63eb207
abc9620
 
 
 
 
 
63eb207
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
Gradio app to compare object‑detection models:
  • Ultralytics YOLOv12 (n, s, m, l, x)
  • Ultralytics YOLOv11 (n, s, m, l, x)
  • Roboflow RF‑DETR (Base, Large)
  • Custom fine‑tuned checkpoints (.pt/.pth upload)

Revision 2025‑04‑19‑d:
  • Pre‑loads all selected models before running detections, with a visible progress bar.
  • Progress shows two phases: *Loading weights* and *Running inference*.
  • Keeps thin, semi‑transparent boxes and concise error labels.
"""

from __future__ import annotations

import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES

###############################################################################
# Model registry & cache
###############################################################################

YOLO_MODEL_MAP: Dict[str, str] = {
    "YOLOv12‑n": "yolov12n.pt",
    "YOLOv12‑s": "yolov12s.pt",
    "YOLOv12‑m": "yolov12m.pt",
    "YOLOv12‑l": "yolov12l.pt",
    "YOLOv12‑x": "yolov12x.pt",
    "YOLOv11‑n": "yolov11n.pt",
    "YOLOv11‑s": "yolov11s.pt",
    "YOLOv11‑m": "yolov11m.pt",
    "YOLOv11‑l": "yolov11l.pt",
    "YOLOv11‑x": "yolov11x.pt",
}

RFDETR_MODEL_MAP = {
    "RF‑DETR‑Base (29M)": "base",
    "RF‑DETR‑Large (128M)": "large",
}

ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
    "Custom YOLO (.pt/.pth)",
    "Custom RF‑DETR (.pth)",
]

_loaded: Dict[str, object] = {}

def load_model(choice: str, custom_file: Optional[Path] = None):
    """Fetch and cache a detector instance for *choice*."""
    if choice in _loaded:
        return _loaded[choice]

    if choice in YOLO_MODEL_MAP:
        model = YOLO(YOLO_MODEL_MAP[choice])  # Ultralytics auto‑downloads if missing
    elif choice in RFDETR_MODEL_MAP:
        model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
    elif choice.startswith("Custom YOLO"):
        if custom_file is None:
            raise RuntimeError("Upload a YOLO .pt/.pth checkpoint first.")
        model = YOLO(str(custom_file))
    elif choice.startswith("Custom RF‑DETR"):
        if custom_file is None:
            raise RuntimeError("Upload an RF‑DETR .pth checkpoint first.")
        model = RFDETRBase(pretrain_weights=str(custom_file))
    else:
        raise RuntimeError(f"Unsupported model choice: {choice}")

    _loaded[choice] = model
    return model

###############################################################################
# Inference helpers
###############################################################################

BOX_THICKNESS = 2  # thinner boxes
BOX_ALPHA = 0.6    # 60 % opacity

box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()

def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
    return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)

def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
    start = time.perf_counter()

    if isinstance(model, (RFDETRBase, RFDETRLarge)):
        detections = model.predict(image, threshold=threshold)
        label_src = COCO_CLASSES
    else:
        ul_res = model.predict(image, verbose=False)[0]
        detections = sv.Detections.from_ultralytics(ul_res)
        label_src = model.names  # type: ignore

    runtime = time.perf_counter() - start

    img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    overlay = img_bgr.copy()
    overlay = box_annotator.annotate(overlay, detections)
    overlay = label_annotator.annotate(
        overlay,
        detections,
        [f"{label_src[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)],
    )
    blended = _blend(img_bgr, overlay)
    return Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)), runtime

###############################################################################
# Gradio generator callback with progress
###############################################################################

def compare_models(
    models: List[str],
    img: Image.Image,
    threshold: float,
    custom_file: Optional[Path],
):
    if img is None:
        raise gr.Error("Please upload an image first.")
    if img.mode != "RGB":
        img = img.convert("RGB")

    total_steps = len(models) * 2  # phase 1: load, phase 2: inference
    progress = gr.Progress(total=total_steps)

    # ----- Phase 1: preload weights -----
    detectors: Dict[str, object] = {}
    for i, name in enumerate(models, 1):
        try:
            detectors[name] = load_model(name, custom_file)
        except Exception as exc:
            detectors[name] = exc  # store exception for later reporting
        progress.update(i, desc=f"Loading {name}")

    # ----- Phase 2: run inference -----
    results: List[Image.Image] = []
    legends: Dict[str, str] = {}

    for j, name in enumerate(models, 1):
        detector_or_err = detectors[name]
        step_index = len(models) + j
        if isinstance(detector_or_err, Exception):
            # model failed to load
            results.append(Image.new("RGB", img.size, (40, 40, 40)))
            emsg = str(detector_or_err)
            legends[name] = "Unavailable (weights not found)" if "No such file" in emsg or "not found" in emsg else f"ERROR: {emsg.splitlines()[0][:120]}"
            progress.update(step_index, desc=f"Skipped {name}")
            continue
        try:
            annotated, latency = run_single_inference(detector_or_err, img, threshold)
            results.append(annotated)
            legends[name] = f"{latency*1000:.1f} ms"
        except Exception as exc:
            results.append(Image.new("RGB", img.size, (40, 40, 40)))
            legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
        progress.update(step_index, desc=f"Inference {name}")

    yield results, legends  # final output

###############################################################################
# Gradio UI
###############################################################################

def build_demo():
    with gr.Blocks(title="CV Model Comparison") as demo:
        gr.Markdown("""# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, then click **Run Inference**.\nThin, semi‑transparent boxes highlight detections.""")

        with gr.Row():
            sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
            conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")

        ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
        img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])

        with gr.Row():
            gallery = gr.Gallery(label="Results", columns=2, height="auto")
        legend_out = gr.JSON(label="Latency / status by model")

        run_btn = gr.Button("Run Inference", variant="primary")
        run_btn.click(compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out])

    return demo

if __name__ == "__main__":
    build_demo().launch()