Spaces:
Running
Running
File size: 6,697 Bytes
63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 9503f8d 63eb207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
"""
Gradio app to compare object‑detection models:
• Ultralytics YOLOv12 (n, s, m, l, x)
• Ultralytics YOLOv11 (n, s, m, l, x)
• Roboflow RF‑DETR (Base, Large)
• Custom fine‑tuned checkpoints for either framework (upload .pt/.pth files)
Python ≥3.9
Install:
pip install -r requirements.txt
Optionally, add GPU‑specific PyTorch wheels or `rfdetr[onnxexport]` for ONNX export.
"""
from __future__ import annotations
import time
from pathlib import Path
from typing import List, Tuple, Optional
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES
###############################################################################
# Model registry & lazy loader
###############################################################################
YOLO_MODEL_MAP = {
# Names follow Ultralytics hub convention; they will be auto‑downloaded
"YOLOv12‑n": "yolov12n.pt",
"YOLOv12‑s": "yolov12s.pt",
"YOLOv12‑m": "yolov12m.pt",
"YOLOv12‑l": "yolov12l.pt",
"YOLOv12‑x": "yolov12x.pt",
"YOLOv11‑n": "yolov11n.pt",
"YOLOv11‑s": "yolov11s.pt",
"YOLOv11‑m": "yolov11m.pt",
"YOLOv11‑l": "yolov11l.pt",
"YOLOv11‑x": "yolov11x.pt",
}
RFDETR_MODEL_MAP = {
"RF‑DETR‑Base (29M)": "base",
"RF‑DETR‑Large (128M)": "large",
}
ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
"Custom YOLO (.pt/.pth)",
"Custom RF‑DETR (.pth)",
]
_loaded = {} # cache of already‑instantiated models
def load_model(choice: str, custom_file: Optional[Path] = None):
"""Return (and cache) a model instance for *choice*.
custom_file is a Path object (uploaded file) used when choice is custom.
Raises RuntimeError with helpful message if loading fails.
"""
global _loaded
if choice in _loaded:
return _loaded[choice]
try:
if choice in YOLO_MODEL_MAP:
weight_id = YOLO_MODEL_MAP[choice]
mdl = YOLO(weight_id) # Ultralytics downloads if not local
elif choice in RFDETR_MODEL_MAP:
mdl = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
elif choice.startswith("Custom YOLO"):
if not custom_file:
raise ValueError("Upload a YOLO .pt/.pth checkpoint first.")
mdl = YOLO(str(custom_file))
elif choice.startswith("Custom RF‑DETR"):
if not custom_file:
raise ValueError("Upload an RF‑DETR .pth checkpoint first.")
mdl = RFDETRBase(pretrain_weights=str(custom_file))
else:
raise ValueError(f"Unsupported model choice: {choice}")
except FileNotFoundError as e:
raise RuntimeError(
f"Weights for '{choice}' not found locally and could not be downloaded. "
"Place the .pt file in the working directory, supply a custom checkpoint, "
"or ensure the model is released on the Ultralytics hub.\n" + str(e)
) from e
_loaded[choice] = mdl
return mdl
###############################################################################
# Inference helpers
###############################################################################
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
start = time.perf_counter()
if isinstance(model, (RFDETRBase, RFDETRLarge)):
detections = model.predict(image, threshold=threshold)
label_source = COCO_CLASSES
else: # Ultralytics YOLO
result = model.predict(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(result)
label_source = model.names
runtime = time.perf_counter() - start
labels = [f"{label_source[cid]} {conf:.2f}" for cid, conf in zip(detections.class_id, detections.confidence)]
annotated = box_annotator.annotate(image.copy(), detections)
annotated = label_annotator.annotate(annotated, detections, labels)
return annotated, runtime
###############################################################################
# Gradio UI logic
###############################################################################
def compare_models(models: List[str], img: Image.Image, threshold: float, custom_file: Optional[Path]):
if img is None:
raise gr.Error("Please upload an image first.")
if img.mode != "RGB":
img = img.convert("RGB")
results, legends = [], []
for m in models:
try:
model_obj = load_model(m, custom_file)
annotated, t = run_single_inference(model_obj, img, threshold)
results.append(annotated)
legends.append(f"{m} – {t*1000:.1f} ms")
except Exception as e:
# Append a blank image with the error message overlayed
error_img = Image.new("RGB", img.size, color=(30, 30, 30))
legends.append(f"{m} – ERROR: {e}")
results.append(error_img)
return results, legends
###############################################################################
# Build & launch demo
###############################################################################
def build_demo():
with gr.Blocks(title="CV Model Comparison") as demo:
gr.Markdown("""# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, and optionally upload a custom checkpoint.\nThe app annotates predictions and reports per‑model latency.""")
with gr.Row():
model_select = gr.CheckboxGroup(choices=ALL_MODELS, value=["YOLOv12‑n"], label="Select models")
threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence threshold")
custom_checkpoint = gr.File(label="Upload custom YOLO / RF‑DETR checkpoint", file_types=[".pt", ".pth"], interactive=True)
image_in = gr.Image(type="pil", label="Upload image", sources=["upload", "webcam"], show_label=True)
with gr.Row():
gallery = gr.Gallery(label="Annotated results", columns=2, height="auto")
legends_out = gr.JSON(label="Runtime (ms) or error messages")
run_btn = gr.Button("Run Inference", variant="primary")
run_btn.click(
fn=compare_models,
inputs=[model_select, image_in, threshold_slider, custom_checkpoint],
outputs=[gallery, legends_out],
)
return demo
if __name__ == "__main__":
build_demo().launch()
|