Spaces:
Sleeping
Sleeping
File size: 6,573 Bytes
63eb207 abc9620 9503f8d abc9620 63eb207 abc9620 63eb207 edd3af7 63eb207 9503f8d 63eb207 9503f8d 63eb207 abc9620 63eb207 9503f8d 63eb207 edd3af7 63eb207 9503f8d abc9620 63eb207 abc9620 9503f8d abc9620 9503f8d abc9620 9503f8d abc9620 9503f8d abc9620 9503f8d abc9620 9503f8d abc9620 9503f8d abc9620 63eb207 9503f8d 90903c1 9503f8d 63eb207 abc9620 63eb207 abc9620 edd3af7 63eb207 abc9620 63eb207 abc9620 edd3af7 abc9620 63eb207 abc9620 edd3af7 90903c1 abc9620 90903c1 abc9620 63eb207 9503f8d edd3af7 9503f8d 63eb207 abc9620 9503f8d 63eb207 9503f8d edd3af7 abc9620 9503f8d abc9620 9503f8d abc9620 edd3af7 abc9620 766e4d2 abc9620 edd3af7 63eb207 9503f8d abc9620 9503f8d 63eb207 90903c1 abc9620 90903c1 abc9620 63eb207 abc9620 63eb207 abc9620 63eb207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""
Gradio app to compare object‑detection models:
• Ultralytics YOLOv12 (n, s, m, l, x)
• Ultralytics YOLOv11 (n, s, m, l, x)
• Roboflow RF‑DETR (Base, Large)
• Custom fine‑tuned checkpoints (.pt/.pth upload)
Revision 2025‑04‑19‑c:
• Re‑indented entire file with 4‑space consistency to remove `IndentationError`.
• Thin, semi‑transparent 60 % boxes; concise error labels.
"""
from __future__ import annotations
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES
###############################################################################
# Model registry & lazy loader
###############################################################################
YOLO_MODEL_MAP: Dict[str, str] = {
"YOLOv12‑n": "yolov12n.pt",
"YOLOv12‑s": "yolov12s.pt",
"YOLOv12‑m": "yolov12m.pt",
"YOLOv12‑l": "yolov12l.pt",
"YOLOv12‑x": "yolov12x.pt",
"YOLOv11‑n": "yolov11n.pt",
"YOLOv11‑s": "yolov11s.pt",
"YOLOv11‑m": "yolov11m.pt",
"YOLOv11‑l": "yolov11l.pt",
"YOLOv11‑x": "yolov11x.pt",
}
RFDETR_MODEL_MAP = {
"RF‑DETR‑Base (29M)": "base",
"RF‑DETR‑Large (128M)": "large",
}
ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
"Custom YOLO (.pt/.pth)",
"Custom RF‑DETR (.pth)",
]
_loaded: Dict[str, object] = {}
def load_model(choice: str, custom_file: Optional[Path] = None):
"""Return and cache a detector matching *choice*."""
if choice in _loaded:
return _loaded[choice]
try:
if choice in YOLO_MODEL_MAP:
model = YOLO(YOLO_MODEL_MAP[choice])
elif choice in RFDETR_MODEL_MAP:
model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
elif choice.startswith("Custom YOLO"):
if custom_file is None:
raise ValueError("Upload a YOLO .pt/.pth checkpoint first.")
model = YOLO(str(custom_file))
elif choice.startswith("Custom RF‑DETR"):
if custom_file is None:
raise ValueError("Upload an RF‑DETR .pth checkpoint first.")
model = RFDETRBase(pretrain_weights=str(custom_file))
else:
raise ValueError(f"Unsupported model choice: {choice}")
except Exception as exc:
raise RuntimeError(str(exc)) from exc
_loaded[choice] = model
return model
###############################################################################
# Inference helpers
###############################################################################
BOX_THICKNESS = 2
BOX_ALPHA = 0.6
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()
def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)
def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
start = time.perf_counter()
if isinstance(model, (RFDETRBase, RFDETRLarge)):
detections = model.predict(image, threshold=threshold)
label_src = COCO_CLASSES
else:
ul_result = model.predict(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(ul_result)
label_src = model.names # type: ignore
runtime = time.perf_counter() - start
base_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
overlay = base_bgr.copy()
overlay = box_annotator.annotate(overlay, detections)
overlay = label_annotator.annotate(
overlay,
detections,
[f"{label_src[cid]} {conf:.2f}" for cid, conf in zip(detections.class_id, detections.confidence)],
)
blended = _blend(base_bgr, overlay)
out_pil = Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB))
return out_pil, runtime
###############################################################################
# Gradio callback
###############################################################################
def compare_models(
models: List[str],
img: Image.Image,
threshold: float,
custom_file: Optional[Path],
):
if img is None:
raise gr.Error("Please upload an image first.")
if img.mode != "RGB":
img = img.convert("RGB")
results: List[Image.Image] = []
legends: Dict[str, str] = {}
for model_name in models:
try:
detector = load_model(model_name, custom_file)
annotated, latency = run_single_inference(detector, img, threshold)
results.append(annotated)
legends[model_name] = f"{latency*1000:.1f} ms"
except Exception as exc:
results.append(Image.new("RGB", img.size, (40, 40, 40)))
emsg = str(exc)
if "No such file" in emsg or "not found" in emsg:
legends[model_name] = "Unavailable (weights not found)"
else:
legends[model_name] = f"ERROR: {emsg.splitlines()[0][:120]}"
return results, legends
###############################################################################
# Gradio UI
###############################################################################
def build_demo():
with gr.Blocks(title="CV Model Comparison") as demo:
gr.Markdown(
"""# 🔍 Compare Object‑Detection Models\nUpload an image, choose detectors, and optionally add a custom checkpoint.\nBounding boxes are thin (2 px) and 60 % transparent for clarity."""
)
with gr.Row():
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")
ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])
with gr.Row():
gallery = gr.Gallery(label="Results", columns=2, height="auto")
legend_out = gr.JSON(label="Latency / status by model")
run_btn = gr.Button("Run Inference", variant="primary")
run_btn.click(compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out])
return demo
if __name__ == "__main__":
build_demo().launch()
|