File size: 6,573 Bytes
63eb207
 
 
 
 
abc9620
9503f8d
abc9620
 
 
63eb207
 
 
 
 
 
abc9620
63eb207
edd3af7
63eb207
 
 
 
 
 
 
 
9503f8d
63eb207
9503f8d
63eb207
abc9620
63eb207
 
 
 
 
 
 
 
 
 
 
 
 
9503f8d
63eb207
 
 
 
 
 
 
 
edd3af7
63eb207
9503f8d
abc9620
63eb207
 
abc9620
9503f8d
 
abc9620
9503f8d
abc9620
9503f8d
abc9620
9503f8d
abc9620
9503f8d
abc9620
9503f8d
abc9620
9503f8d
 
abc9620
 
 
 
 
63eb207
9503f8d
90903c1
9503f8d
63eb207
abc9620
 
 
 
63eb207
 
abc9620
 
edd3af7
63eb207
 
abc9620
63eb207
 
abc9620
edd3af7
abc9620
 
 
 
63eb207
abc9620
 
 
 
edd3af7
90903c1
 
 
abc9620
90903c1
abc9620
 
 
 
63eb207
9503f8d
edd3af7
9503f8d
63eb207
abc9620
 
 
 
 
 
9503f8d
 
63eb207
 
9503f8d
edd3af7
 
 
abc9620
9503f8d
abc9620
 
9503f8d
abc9620
 
edd3af7
abc9620
 
 
766e4d2
abc9620
edd3af7
63eb207
 
9503f8d
abc9620
9503f8d
63eb207
 
 
90903c1
abc9620
90903c1
abc9620
63eb207
abc9620
 
 
 
 
 
63eb207
abc9620
 
 
 
 
 
63eb207
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Gradio app to compare object‑detection models:
  • Ultralytics YOLOv12 (n, s, m, l, x)
  • Ultralytics YOLOv11 (n, s, m, l, x)
  • Roboflow RF‑DETR (Base, Large)
  • Custom fine‑tuned checkpoints (.pt/.pth upload)

Revision 2025‑04‑19‑c:
  • Re‑indented entire file with 4‑space consistency to remove `IndentationError`.
  • Thin, semi‑transparent 60 % boxes; concise error labels.
"""

from __future__ import annotations

import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES

###############################################################################
# Model registry & lazy loader
###############################################################################

YOLO_MODEL_MAP: Dict[str, str] = {
    "YOLOv12‑n": "yolov12n.pt",
    "YOLOv12‑s": "yolov12s.pt",
    "YOLOv12‑m": "yolov12m.pt",
    "YOLOv12‑l": "yolov12l.pt",
    "YOLOv12‑x": "yolov12x.pt",
    "YOLOv11‑n": "yolov11n.pt",
    "YOLOv11‑s": "yolov11s.pt",
    "YOLOv11‑m": "yolov11m.pt",
    "YOLOv11‑l": "yolov11l.pt",
    "YOLOv11‑x": "yolov11x.pt",
}

RFDETR_MODEL_MAP = {
    "RF‑DETR‑Base (29M)": "base",
    "RF‑DETR‑Large (128M)": "large",
}

ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
    "Custom YOLO (.pt/.pth)",
    "Custom RF‑DETR (.pth)",
]

_loaded: Dict[str, object] = {}

def load_model(choice: str, custom_file: Optional[Path] = None):
    """Return and cache a detector matching *choice*."""
    if choice in _loaded:
        return _loaded[choice]

    try:
        if choice in YOLO_MODEL_MAP:
            model = YOLO(YOLO_MODEL_MAP[choice])
        elif choice in RFDETR_MODEL_MAP:
            model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
        elif choice.startswith("Custom YOLO"):
            if custom_file is None:
                raise ValueError("Upload a YOLO .pt/.pth checkpoint first.")
            model = YOLO(str(custom_file))
        elif choice.startswith("Custom RF‑DETR"):
            if custom_file is None:
                raise ValueError("Upload an RF‑DETR .pth checkpoint first.")
            model = RFDETRBase(pretrain_weights=str(custom_file))
        else:
            raise ValueError(f"Unsupported model choice: {choice}")
    except Exception as exc:
        raise RuntimeError(str(exc)) from exc

    _loaded[choice] = model
    return model

###############################################################################
# Inference helpers
###############################################################################

BOX_THICKNESS = 2
BOX_ALPHA = 0.6

box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()

def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
    return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)

def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
    start = time.perf_counter()

    if isinstance(model, (RFDETRBase, RFDETRLarge)):
        detections = model.predict(image, threshold=threshold)
        label_src = COCO_CLASSES
    else:
        ul_result = model.predict(image, verbose=False)[0]
        detections = sv.Detections.from_ultralytics(ul_result)
        label_src = model.names  # type: ignore

    runtime = time.perf_counter() - start

    base_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    overlay = base_bgr.copy()

    overlay = box_annotator.annotate(overlay, detections)
    overlay = label_annotator.annotate(
        overlay,
        detections,
        [f"{label_src[cid]} {conf:.2f}" for cid, conf in zip(detections.class_id, detections.confidence)],
    )

    blended = _blend(base_bgr, overlay)
    out_pil = Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB))
    return out_pil, runtime

###############################################################################
# Gradio callback
###############################################################################

def compare_models(
    models: List[str],
    img: Image.Image,
    threshold: float,
    custom_file: Optional[Path],
):
    if img is None:
        raise gr.Error("Please upload an image first.")
    if img.mode != "RGB":
        img = img.convert("RGB")

    results: List[Image.Image] = []
    legends: Dict[str, str] = {}

    for model_name in models:
        try:
            detector = load_model(model_name, custom_file)
            annotated, latency = run_single_inference(detector, img, threshold)
            results.append(annotated)
            legends[model_name] = f"{latency*1000:.1f} ms"
        except Exception as exc:
            results.append(Image.new("RGB", img.size, (40, 40, 40)))
            emsg = str(exc)
            if "No such file" in emsg or "not found" in emsg:
                legends[model_name] = "Unavailable (weights not found)"
            else:
                legends[model_name] = f"ERROR: {emsg.splitlines()[0][:120]}"

    return results, legends

###############################################################################
# Gradio UI
###############################################################################

def build_demo():
    with gr.Blocks(title="CV Model Comparison") as demo:
        gr.Markdown(
            """# 🔍 Compare Object‑Detection Models\nUpload an image, choose detectors, and optionally add a custom checkpoint.\nBounding boxes are thin (2 px) and 60 % transparent for clarity."""
        )

        with gr.Row():
            sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
            conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")

        ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
        img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])

        with gr.Row():
            gallery = gr.Gallery(label="Results", columns=2, height="auto")
        legend_out = gr.JSON(label="Latency / status by model")

        run_btn = gr.Button("Run Inference", variant="primary")
        run_btn.click(compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out])

    return demo

if __name__ == "__main__":
    build_demo().launch()