Spaces:
Sleeping
Sleeping
| """ | |
| Gradio app to compare object‑detection models: | |
| • Ultralytics YOLOv12 (n, s, m, l, x) | |
| • Ultralytics YOLOv11 (n, s, m, l, x) | |
| • Roboflow RF‑DETR (Base, Large) | |
| • Custom fine‑tuned checkpoints for either framework (upload .pt/.pth files) | |
| Changes in this revision (2025‑04‑19): | |
| • Thinner, semi‑transparent bounding boxes for better visibility in crowded scenes. | |
| • Legend now shows a clean dict of runtimes (or concise errors) instead of auto‑indexed JSON. | |
| • File uploader is fully integrated for custom checkpoints. | |
| """ | |
| from __future__ import annotations | |
| import time | |
| from pathlib import Path | |
| from typing import List, Tuple, Dict, Optional | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import supervision as sv | |
| from ultralytics import YOLO | |
| from rfdetr import RFDETRBase, RFDETRLarge | |
| from rfdetr.util.coco_classes import COCO_CLASSES | |
| ############################################################################### | |
| # Model registry & lazy loader | |
| ############################################################################### | |
| YOLO_MODEL_MAP = { | |
| # Ultralytics hub IDs — downloaded on first use | |
| "YOLOv12‑n": "yolov12n.pt", | |
| "YOLOv12‑s": "yolov12s.pt", | |
| "YOLOv12‑m": "yolov12m.pt", | |
| "YOLOv12‑l": "yolov12l.pt", | |
| "YOLOv12‑x": "yolov12x.pt", | |
| "YOLOv11‑n": "yolov11n.pt", | |
| "YOLOv11‑s": "yolov11s.pt", | |
| "YOLOv11‑m": "yolov11m.pt", | |
| "YOLOv11‑l": "yolov11l.pt", | |
| "YOLOv11‑x": "yolov11x.pt", | |
| } | |
| RFDETR_MODEL_MAP = { | |
| "RF‑DETR‑Base (29M)": "base", | |
| "RF‑DETR‑Large (128M)": "large", | |
| } | |
| ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [ | |
| "Custom YOLO (.pt/.pth)", | |
| "Custom RF‑DETR (.pth)", | |
| ] | |
| _loaded: Dict[str, object] = {} | |
| def load_model(choice: str, custom_file: Optional[Path] = None): | |
| """Lazy‑load and cache a detector. Returns a model instance or raises RuntimeError.""" | |
| if choice in _loaded: | |
| return _loaded[choice] | |
| try: | |
| if choice in YOLO_MODEL_MAP: | |
| mdl = YOLO(YOLO_MODEL_MAP[choice]) # hub download if needed | |
| elif choice in RFDETR_MODEL_MAP: | |
| mdl = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge() | |
| elif choice.startswith("Custom YOLO"): | |
| if not custom_file: | |
| raise ValueError("Upload a YOLO .pt/.pth checkpoint first.") | |
| mdl = YOLO(str(custom_file)) | |
| elif choice.startswith("Custom RF‑DETR"): | |
| if not custom_file: | |
| raise ValueError("Upload an RF‑DETR .pth checkpoint first.") | |
| mdl = RFDETRBase(pretrain_weights=str(custom_file)) | |
| else: | |
| raise ValueError(f"Unsupported model choice: {choice}") | |
| except Exception as e: | |
| raise RuntimeError(str(e)) from e | |
| _loaded[choice] = mdl | |
| return mdl | |
| ############################################################################### | |
| # Inference helpers — semi‑transparent, thin boxes | |
| ############################################################################### | |
| box_annotator = sv.BoxAnnotator(thickness=2) # thinner lines | |
| label_annotator = sv.LabelAnnotator() | |
| def blend_overlay(base_np: np.ndarray, overlay_np: np.ndarray, alpha: float = 0.6) -> np.ndarray: | |
| """Blend two BGR images with given alpha for overlay.""" | |
| return cv2.addWeighted(overlay_np, alpha, base_np, 1 - alpha, 0) | |
| def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]: | |
| start = time.perf_counter() | |
| if isinstance(model, (RFDETRBase, RFDETRLarge)): | |
| detections = model.predict(image, threshold=threshold) | |
| label_source = COCO_CLASSES | |
| else: | |
| result = model.predict(image, verbose=False)[0] | |
| detections = sv.Detections.from_ultralytics(result) | |
| label_source = model.names | |
| runtime = time.perf_counter() - start | |
| img_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| overlay = img_np.copy() | |
| overlay = box_annotator.annotate(overlay, detections) | |
| overlay = label_annotator.annotate(overlay, detections, [f"{label_source[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)]) | |
| blended = blend_overlay(img_np, overlay, alpha=0.6) # semi‑transparent boxes | |
| annotated_pil = Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)) | |
| return annotated_pil, runtime | |
| ############################################################################### | |
| # Gradio callback | |
| ############################################################################### | |
| def compare_models(models: List[str], img: Image.Image, threshold: float, custom_file: Optional[Path]): | |
| if img is None: | |
| raise gr.Error("Please upload an image first.") | |
| if img.mode != "RGB": | |
| img = img.convert("RGB") | |
| results: List[Image.Image] = [] | |
| legends: Dict[str, str] = {} | |
| for m in models: | |
| try: | |
| model_obj = load_model(m, custom_file) | |
| annotated, t = run_single_inference(model_obj, img, threshold) | |
| results.append(annotated) | |
| legends[m] = f"{t*1000:.1f} ms" | |
| except Exception as e: | |
| # show blank slate if model unavailable | |
| results.append(Image.new("RGB", img.size, (40, 40, 40))) | |
| err_msg = str(e) | |
| # Normalize common weight‑missing errors for clarity | |
| if "No such file or directory" in err_msg: | |
| legends[m] = "Unavailable (weights not found)" | |
| else: | |
| legends[m] = f"ERROR: {err_msg.splitlines()[0][:120]}" | |
| return results, legends | |
| ############################################################################### | |
| # Build & launch Gradio UI | |
| ############################################################################### | |
| def build_demo(): | |
| with gr.Blocks(title="CV Model Comparison") as demo: | |
| gr.Markdown("""# 🔍 Compare Object‑Detection Models\nUpload an image, choose detectors, and optionally add a custom checkpoint.\nBounding boxes are thin and 60 % opaque for clarity.""") | |
| with gr.Row(): | |
| model_select = gr.CheckboxGroup(choices=ALL_MODELS, value=["YOLOv12‑n"], label="Select models") | |
| threshold_slider = gr.Slider(0.0, 1.0, 0.5, step=0.05, label="Confidence threshold") | |
| custom_checkpoint = gr.File(label="Upload custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True) | |
| image_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"]) | |
| with gr.Row(): | |
| gallery = gr.Gallery(label="Annotated results", columns=2, height="auto") | |
| legends_out = gr.JSON(label="Latency / status by model") | |
| run_btn = gr.Button("Run Inference", variant="primary") | |
| run_btn.click(compare_models, [model_select, image_in, threshold_slider, custom_checkpoint], [gallery, legends_out]) | |
| return demo | |
| if __name__ == "__main__": | |
| build_demo().launch() | |