Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from ultralytics import YOLO
|
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
|
6 |
-
#
|
7 |
def load_model(model_id: str):
|
8 |
try:
|
9 |
model = YOLO(model_id)
|
@@ -11,16 +11,16 @@ def load_model(model_id: str):
|
|
11 |
except Exception as e:
|
12 |
return f"Error loading model: {e}"
|
13 |
|
|
|
14 |
def predict_image(model, image):
|
15 |
try:
|
16 |
-
# Run inference on the image
|
17 |
results = model(image)
|
18 |
-
|
19 |
-
annotated_frame = results[0].plot()
|
20 |
return annotated_frame
|
21 |
except Exception as e:
|
22 |
return f"Error during image inference: {e}"
|
23 |
|
|
|
24 |
def predict_video(model, video_file):
|
25 |
try:
|
26 |
cap = cv2.VideoCapture(video_file.name)
|
@@ -47,14 +47,12 @@ def predict_video(model, video_file):
|
|
47 |
except Exception as e:
|
48 |
return f"Error during video inference: {e}"
|
49 |
|
|
|
50 |
def inference(model_id, input_media, media_type):
|
51 |
-
# Dynamically load the model using the provided identifier
|
52 |
model = load_model(model_id)
|
53 |
-
if isinstance(model, str):
|
54 |
-
# This means an error message was returned
|
55 |
return model
|
56 |
|
57 |
-
# Process based on media type
|
58 |
if media_type == "Image":
|
59 |
return predict_image(model, input_media)
|
60 |
elif media_type == "Video":
|
@@ -62,24 +60,20 @@ def inference(model_id, input_media, media_type):
|
|
62 |
else:
|
63 |
return "Unsupported media type."
|
64 |
|
65 |
-
#
|
66 |
-
# - A text input for the model identifier
|
67 |
-
# - A file input for images or videos
|
68 |
-
# - A radio selection for choosing the media type
|
69 |
model_text_input = gr.Textbox(label="Model Identifier", placeholder="e.g., yolov8n.pt, yolov8-seg.pt, yolov8-obb.pt")
|
70 |
-
file_input = gr.
|
71 |
media_type_dropdown = gr.Radio(choices=["Image", "Video"], label="Select Media Type", value="Image")
|
|
|
72 |
|
73 |
-
#
|
74 |
-
# For a combined interface, we use File output because it can handle both cases with minimal changes.
|
75 |
iface = gr.Interface(
|
76 |
fn=inference,
|
77 |
inputs=[model_text_input, file_input, media_type_dropdown],
|
78 |
-
outputs=
|
79 |
title="Dynamic Ultralytics YOLO Inference",
|
80 |
description=(
|
81 |
-
"Enter the model identifier (
|
82 |
-
"to run inference. The system dynamically loads the specified model and processes your media input."
|
83 |
)
|
84 |
)
|
85 |
|
|
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
|
6 |
+
# Function to load the model dynamically based on user input.
|
7 |
def load_model(model_id: str):
|
8 |
try:
|
9 |
model = YOLO(model_id)
|
|
|
11 |
except Exception as e:
|
12 |
return f"Error loading model: {e}"
|
13 |
|
14 |
+
# Inference for images: runs the model and plots predictions.
|
15 |
def predict_image(model, image):
|
16 |
try:
|
|
|
17 |
results = model(image)
|
18 |
+
annotated_frame = results[0].plot() # This handles detection, segmentation, or OBB models.
|
|
|
19 |
return annotated_frame
|
20 |
except Exception as e:
|
21 |
return f"Error during image inference: {e}"
|
22 |
|
23 |
+
# Inference for videos: processes the video frame by frame.
|
24 |
def predict_video(model, video_file):
|
25 |
try:
|
26 |
cap = cv2.VideoCapture(video_file.name)
|
|
|
47 |
except Exception as e:
|
48 |
return f"Error during video inference: {e}"
|
49 |
|
50 |
+
# Unified inference function based on media type.
|
51 |
def inference(model_id, input_media, media_type):
|
|
|
52 |
model = load_model(model_id)
|
53 |
+
if isinstance(model, str): # Indicates an error message.
|
|
|
54 |
return model
|
55 |
|
|
|
56 |
if media_type == "Image":
|
57 |
return predict_image(model, input_media)
|
58 |
elif media_type == "Video":
|
|
|
60 |
else:
|
61 |
return "Unsupported media type."
|
62 |
|
63 |
+
# Updated Gradio interface components using the new API.
|
|
|
|
|
|
|
64 |
model_text_input = gr.Textbox(label="Model Identifier", placeholder="e.g., yolov8n.pt, yolov8-seg.pt, yolov8-obb.pt")
|
65 |
+
file_input = gr.File(label="Upload Image/Video File")
|
66 |
media_type_dropdown = gr.Radio(choices=["Image", "Video"], label="Select Media Type", value="Image")
|
67 |
+
output_file = gr.File(label="Processed Output")
|
68 |
|
69 |
+
# Create Gradio interface.
|
|
|
70 |
iface = gr.Interface(
|
71 |
fn=inference,
|
72 |
inputs=[model_text_input, file_input, media_type_dropdown],
|
73 |
+
outputs=output_file,
|
74 |
title="Dynamic Ultralytics YOLO Inference",
|
75 |
description=(
|
76 |
+
"Enter the model identifier (supports detection, segmentation, or OBB models) and upload an image or video."
|
|
|
77 |
)
|
78 |
)
|
79 |
|