Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from libs.base_utils import do_resize_content | |
| from imagedream.ldm.util import ( | |
| instantiate_from_config, | |
| get_obj_from_str, | |
| ) | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| import numpy as np | |
| from inference import generate3d | |
| from huggingface_hub import hf_hub_download | |
| import json | |
| import argparse | |
| import shutil | |
| from model import CRM | |
| import PIL | |
| import rembg | |
| import os | |
| from pipelines import TwoStagePipeline | |
| rembg_session = rembg.new_session() | |
| def expand_to_square(image, bg_color=(0, 0, 0, 0)): | |
| # expand image to 1:1 | |
| width, height = image.size | |
| if width == height: | |
| return image | |
| new_size = (max(width, height), max(width, height)) | |
| new_image = Image.new("RGBA", new_size, bg_color) | |
| paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
| new_image.paste(image, paste_position) | |
| return new_image | |
| def remove_background( | |
| image: PIL.Image.Image, | |
| rembg_session = None, | |
| force: bool = False, | |
| **rembg_kwargs, | |
| ) -> PIL.Image.Image: | |
| do_remove = True | |
| if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
| # explain why current do not rm bg | |
| print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
| background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
| image = Image.alpha_composite(background, image) | |
| do_remove = False | |
| do_remove = do_remove or force | |
| if do_remove: | |
| image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
| return image | |
| def do_resize_content(original_image: Image, scale_rate): | |
| # resize image content wile retain the original image size | |
| if scale_rate != 1: | |
| # Calculate the new size after rescaling | |
| new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
| # Resize the image while maintaining the aspect ratio | |
| resized_image = original_image.resize(new_size) | |
| # Create a new image with the original size and black background | |
| padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
| paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
| padded_image.paste(resized_image, paste_position) | |
| return padded_image | |
| else: | |
| return original_image | |
| def add_background(image, bg_color=(255, 255, 255)): | |
| # given an RGBA image, alpha channel is used as mask to add background color | |
| background = Image.new("RGBA", image.size, bg_color) | |
| return Image.alpha_composite(background, image) | |
| def preprocess_image(image, background_choice, foreground_ratio, backgroud_color): | |
| """ | |
| input image is a pil image in RGBA, return RGB image | |
| """ | |
| print(background_choice) | |
| if background_choice == "Alpha as mask": | |
| background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
| image = Image.alpha_composite(background, image) | |
| else: | |
| image = remove_background(image, rembg_session, force_remove=True) | |
| image = do_resize_content(image, foreground_ratio) | |
| image = expand_to_square(image) | |
| image = add_background(image, backgroud_color) | |
| return image.convert("RGB") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--inputdir", | |
| type=str, | |
| default="examples/kunkun.webp", | |
| help="dir for input image", | |
| ) | |
| parser.add_argument( | |
| "--scale", | |
| type=float, | |
| default=5.0, | |
| ) | |
| parser.add_argument( | |
| "--step", | |
| type=int, | |
| default=50, | |
| ) | |
| parser.add_argument( | |
| "--bg_choice", | |
| type=str, | |
| default="Auto Remove background", | |
| help="[Auto Remove background] or [Alpha as mask]", | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| default="out/", | |
| ) | |
| args = parser.parse_args() | |
| img = Image.open(args.inputdir) | |
| img = preprocess_image(img, args.bg_choice, 1.0, (127, 127, 127)) | |
| os.makedirs(args.outdir, exist_ok=True) | |
| img.save(args.outdir+"preprocessed_image.png") | |
| crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") | |
| specs = json.load(open("configs/specs_objaverse_total.json")) | |
| model = CRM(specs).to("cuda") | |
| model.load_state_dict(torch.load(crm_path, map_location = "cuda"), strict=False) | |
| stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config | |
| stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config | |
| stage2_sampler_config = stage2_config.sampler | |
| stage1_sampler_config = stage1_config.sampler | |
| stage1_model_config = stage1_config.models | |
| stage2_model_config = stage2_config.models | |
| xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") | |
| pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") | |
| stage1_model_config.resume = pixel_path | |
| stage2_model_config.resume = xyz_path | |
| pipeline = TwoStagePipeline( | |
| stage1_model_config, | |
| stage2_model_config, | |
| stage1_sampler_config, | |
| stage2_sampler_config, | |
| ) | |
| rt_dict = pipeline(img, scale=args.scale, step=args.step) | |
| stage1_images = rt_dict["stage1_images"] | |
| stage2_images = rt_dict["stage2_images"] | |
| np_imgs = np.concatenate(stage1_images, 1) | |
| np_xyzs = np.concatenate(stage2_images, 1) | |
| Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png") | |
| Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png") | |
| glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cuda") | |
| shutil.copy(obj_path, args.outdir+"output3d.zip") |