Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import numpy as np | |
| from inspect import isfunction | |
| from typing import Optional, Any, List | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from diffusers.configuration_utils import ConfigMixin | |
| from diffusers.models.modeling_utils import ModelMixin | |
| # require xformers! | |
| import xformers | |
| import xformers.ops | |
| from kiui.cam import orbit_camera | |
| def get_camera( | |
| num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False, | |
| ): | |
| angle_gap = azimuth_span / num_frames | |
| cameras = [] | |
| for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap): | |
| pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4] | |
| # opengl to blender | |
| if blender_coord: | |
| pose[2] *= -1 | |
| pose[[1, 2]] = pose[[2, 1]] | |
| cameras.append(pose.flatten()) | |
| if extra_view: | |
| cameras.append(np.zeros_like(cameras[0])) | |
| return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16] | |
| def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| if not repeat_only: | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ).to(device=timesteps.device) | |
| args = timesteps[:, None] * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat( | |
| [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
| ) | |
| else: | |
| embedding = repeat(timesteps, "b -> b d", d=dim) | |
| # import pdb; pdb.set_trace() | |
| return embedding | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def default(val, d): | |
| if val is not None: | |
| return val | |
| return d() if isfunction(d) else d | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = default(dim_out, dim) | |
| project_in = ( | |
| nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
| if not glu | |
| else GEGLU(dim, inner_dim) | |
| ) | |
| self.net = nn.Sequential( | |
| project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class MemoryEfficientCrossAttention(nn.Module): | |
| # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
| def __init__( | |
| self, | |
| query_dim, | |
| context_dim=None, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.0, | |
| ip_dim=0, | |
| ip_weight=1, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| self.ip_dim = ip_dim | |
| self.ip_weight = ip_weight | |
| if self.ip_dim > 0: | |
| self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
| ) | |
| self.attention_op = None | |
| def forward(self, x, context=None): | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| if self.ip_dim > 0: | |
| # context: [B, 77 + 16(ip), 1024] | |
| token_len = context.shape[1] | |
| context_ip = context[:, -self.ip_dim :, :] | |
| k_ip = self.to_k_ip(context_ip) | |
| v_ip = self.to_v_ip(context_ip) | |
| context = context[:, : (token_len - self.ip_dim), :] | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| b, _, _ = q.shape | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # actually compute the attention, what we cannot get enough of | |
| out = xformers.ops.memory_efficient_attention( | |
| q, k, v, attn_bias=None, op=self.attention_op | |
| ) | |
| if self.ip_dim > 0: | |
| k_ip, v_ip = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (k_ip, v_ip), | |
| ) | |
| # actually compute the attention, what we cannot get enough of | |
| out_ip = xformers.ops.memory_efficient_attention( | |
| q, k_ip, v_ip, attn_bias=None, op=self.attention_op | |
| ) | |
| out = out + self.ip_weight * out_ip | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(b, self.heads, out.shape[1], self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, out.shape[1], self.heads * self.dim_head) | |
| ) | |
| return self.to_out(out) | |
| class BasicTransformerBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| n_heads, | |
| d_head, | |
| context_dim, | |
| dropout=0.0, | |
| gated_ff=True, | |
| ip_dim=0, | |
| ip_weight=1, | |
| ): | |
| super().__init__() | |
| self.attn1 = MemoryEfficientCrossAttention( | |
| query_dim=dim, | |
| context_dim=None, # self-attention | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| ) | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| self.attn2 = MemoryEfficientCrossAttention( | |
| query_dim=dim, | |
| context_dim=context_dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| # ip only applies to cross-attention | |
| ip_dim=ip_dim, | |
| ip_weight=ip_weight, | |
| ) | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.norm3 = nn.LayerNorm(dim) | |
| def forward(self, x, context=None, num_frames=1): | |
| x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() | |
| x = self.attn1(self.norm1(x), context=None) + x | |
| x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() | |
| x = self.attn2(self.norm2(x), context=context) + x | |
| x = self.ff(self.norm3(x)) + x | |
| return x | |
| class SpatialTransformer3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| context_dim, # cross attention input dim | |
| depth=1, | |
| dropout=0.0, | |
| ip_dim=0, | |
| ip_weight=1, | |
| ): | |
| super().__init__() | |
| if not isinstance(context_dim, list): | |
| context_dim = [context_dim] | |
| self.in_channels = in_channels | |
| inner_dim = n_heads * d_head | |
| self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock3D( | |
| inner_dim, | |
| n_heads, | |
| d_head, | |
| context_dim=context_dim[d], | |
| dropout=dropout, | |
| ip_dim=ip_dim, | |
| ip_weight=ip_weight, | |
| ) | |
| for d in range(depth) | |
| ] | |
| ) | |
| self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | |
| def forward(self, x, context=None, num_frames=1): | |
| # note: if no context is given, cross-attention defaults to self-attention | |
| if not isinstance(context, list): | |
| context = [context] | |
| b, c, h, w = x.shape | |
| x_in = x | |
| x = self.norm(x) | |
| x = rearrange(x, "b c h w -> b (h w) c").contiguous() | |
| x = self.proj_in(x) | |
| for i, block in enumerate(self.transformer_blocks): | |
| x = block(x, context=context[i], num_frames=num_frames) | |
| x = self.proj_out(x) | |
| x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
| return x + x_in | |
| class PerceiverAttention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8): | |
| super().__init__() | |
| self.scale = dim_head ** -0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, n2, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| b, l, _ = latents.shape | |
| q = self.to_q(latents) | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q, k, v = map( | |
| lambda t: t.reshape(b, t.shape[1], self.heads, -1) | |
| .transpose(1, 2) | |
| .reshape(b, self.heads, t.shape[1], -1) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| out = out.permute(0, 2, 1, 3).reshape(b, l, -1) | |
| return self.to_out(out) | |
| class Resampler(nn.Module): | |
| def __init__( | |
| self, | |
| dim=1024, | |
| depth=8, | |
| dim_head=64, | |
| heads=16, | |
| num_queries=8, | |
| embedding_dim=768, | |
| output_dim=1024, | |
| ff_mult=4, | |
| ): | |
| super().__init__() | |
| self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) | |
| self.proj_in = nn.Linear(embedding_dim, dim) | |
| self.proj_out = nn.Linear(dim, output_dim) | |
| self.norm_out = nn.LayerNorm(output_dim) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, dim * ff_mult, bias=False), | |
| nn.GELU(), | |
| nn.Linear(dim * ff_mult, dim, bias=False), | |
| ) | |
| ] | |
| ) | |
| ) | |
| def forward(self, x): | |
| latents = self.latents.repeat(x.size(0), 1, 1) | |
| x = self.proj_in(x) | |
| for attn, ff in self.layers: | |
| latents = attn(x, latents) + latents | |
| latents = ff(latents) + latents | |
| latents = self.proj_out(latents) | |
| return self.norm_out(latents) | |
| class CondSequential(nn.Sequential): | |
| """ | |
| A sequential module that passes timestep embeddings to the children that | |
| support it as an extra input. | |
| """ | |
| def forward(self, x, emb, context=None, num_frames=1): | |
| for layer in self: | |
| if isinstance(layer, ResBlock): | |
| x = layer(x, emb) | |
| elif isinstance(layer, SpatialTransformer3D): | |
| x = layer(x, context, num_frames=num_frames) | |
| else: | |
| x = layer(x) | |
| return x | |
| class Upsample(nn.Module): | |
| """ | |
| An upsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| if use_conv: | |
| self.conv = conv_nd( | |
| dims, self.channels, self.out_channels, 3, padding=padding | |
| ) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| x = F.interpolate( | |
| x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
| ) | |
| else: | |
| x = F.interpolate(x, scale_factor=2, mode="nearest") | |
| if self.use_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd( | |
| dims, | |
| self.channels, | |
| self.out_channels, | |
| 3, | |
| stride=stride, | |
| padding=padding, | |
| ) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class ResBlock(nn.Module): | |
| """ | |
| A residual block that can optionally change the number of channels. | |
| :param channels: the number of input channels. | |
| :param emb_channels: the number of timestep embedding channels. | |
| :param dropout: the rate of dropout. | |
| :param out_channels: if specified, the number of out channels. | |
| :param use_conv: if True and out_channels is specified, use a spatial | |
| convolution instead of a smaller 1x1 convolution to change the | |
| channels in the skip connection. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param up: if True, use this block for upsampling. | |
| :param down: if True, use this block for downsampling. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| emb_channels, | |
| dropout, | |
| out_channels=None, | |
| use_conv=False, | |
| use_scale_shift_norm=False, | |
| dims=2, | |
| up=False, | |
| down=False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.dropout = dropout | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_scale_shift_norm = use_scale_shift_norm | |
| self.in_layers = nn.Sequential( | |
| nn.GroupNorm(32, channels), | |
| nn.SiLU(), | |
| conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
| ) | |
| self.updown = up or down | |
| if up: | |
| self.h_upd = Upsample(channels, False, dims) | |
| self.x_upd = Upsample(channels, False, dims) | |
| elif down: | |
| self.h_upd = Downsample(channels, False, dims) | |
| self.x_upd = Downsample(channels, False, dims) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear( | |
| emb_channels, | |
| 2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
| ), | |
| ) | |
| self.out_layers = nn.Sequential( | |
| nn.GroupNorm(32, self.out_channels), | |
| nn.SiLU(), | |
| nn.Dropout(p=dropout), | |
| zero_module( | |
| conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
| ), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| elif use_conv: | |
| self.skip_connection = conv_nd( | |
| dims, channels, self.out_channels, 3, padding=1 | |
| ) | |
| else: | |
| self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
| def forward(self, x, emb): | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| emb_out = self.emb_layers(emb).type(h.dtype) | |
| while len(emb_out.shape) < len(h.shape): | |
| emb_out = emb_out[..., None] | |
| if self.use_scale_shift_norm: | |
| out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
| scale, shift = torch.chunk(emb_out, 2, dim=1) | |
| h = out_norm(h) * (1 + scale) + shift | |
| h = out_rest(h) | |
| else: | |
| h = h + emb_out | |
| h = self.out_layers(h) | |
| return self.skip_connection(x) + h | |
| class MultiViewUNetModel(ModelMixin, ConfigMixin): | |
| """ | |
| The full multi-view UNet model with attention, timestep embedding and camera embedding. | |
| :param in_channels: channels in the input Tensor. | |
| :param model_channels: base channel count for the model. | |
| :param out_channels: channels in the output Tensor. | |
| :param num_res_blocks: number of residual blocks per downsample. | |
| :param attention_resolutions: a collection of downsample rates at which | |
| attention will take place. May be a set, list, or tuple. | |
| For example, if this contains 4, then at 4x downsampling, attention | |
| will be used. | |
| :param dropout: the dropout probability. | |
| :param channel_mult: channel multiplier for each level of the UNet. | |
| :param conv_resample: if True, use learned convolutions for upsampling and | |
| downsampling. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param num_classes: if specified (as an int), then this model will be | |
| class-conditional with `num_classes` classes. | |
| :param num_heads: the number of attention heads in each attention layer. | |
| :param num_heads_channels: if specified, ignore num_heads and instead use | |
| a fixed channel width per attention head. | |
| :param num_heads_upsample: works with num_heads to set a different number | |
| of heads for upsampling. Deprecated. | |
| :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
| :param resblock_updown: use residual blocks for up/downsampling. | |
| :param use_new_attention_order: use a different attention pattern for potentially | |
| increased efficiency. | |
| :param camera_dim: dimensionality of camera input. | |
| """ | |
| def __init__( | |
| self, | |
| image_size, | |
| in_channels, | |
| model_channels, | |
| out_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| num_classes=None, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| num_heads_upsample=-1, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| transformer_depth=1, | |
| context_dim=None, | |
| n_embed=None, | |
| num_attention_blocks=None, | |
| adm_in_channels=None, | |
| camera_dim=None, | |
| ip_dim=0, # imagedream uses ip_dim > 0 | |
| ip_weight=1.0, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| assert context_dim is not None | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert ( | |
| num_head_channels != -1 | |
| ), "Either num_heads or num_head_channels has to be set" | |
| if num_head_channels == -1: | |
| assert ( | |
| num_heads != -1 | |
| ), "Either num_heads or num_head_channels has to be set" | |
| self.image_size = image_size | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| if isinstance(num_res_blocks, int): | |
| self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: | |
| if len(num_res_blocks) != len(channel_mult): | |
| raise ValueError( | |
| "provide num_res_blocks either as an int (globally constant) or " | |
| "as a list/tuple (per-level) with the same length as channel_mult" | |
| ) | |
| self.num_res_blocks = num_res_blocks | |
| if num_attention_blocks is not None: | |
| assert len(num_attention_blocks) == len(self.num_res_blocks) | |
| assert all( | |
| map( | |
| lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], | |
| range(len(num_attention_blocks)), | |
| ) | |
| ) | |
| print( | |
| f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
| f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
| f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
| f"attention will still not be set." | |
| ) | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.num_classes = num_classes | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| self.ip_dim = ip_dim | |
| self.ip_weight = ip_weight | |
| if self.ip_dim > 0: | |
| self.image_embed = Resampler( | |
| dim=context_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=12, | |
| num_queries=ip_dim, # num token | |
| embedding_dim=1280, | |
| output_dim=context_dim, | |
| ff_mult=4, | |
| ) | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| nn.Linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| nn.Linear(time_embed_dim, time_embed_dim), | |
| ) | |
| if camera_dim is not None: | |
| time_embed_dim = model_channels * 4 | |
| self.camera_embed = nn.Sequential( | |
| nn.Linear(camera_dim, time_embed_dim), | |
| nn.SiLU(), | |
| nn.Linear(time_embed_dim, time_embed_dim), | |
| ) | |
| if self.num_classes is not None: | |
| if isinstance(self.num_classes, int): | |
| self.label_emb = nn.Embedding(self.num_classes, time_embed_dim) | |
| elif self.num_classes == "continuous": | |
| # print("setting up linear c_adm embedding layer") | |
| self.label_emb = nn.Linear(1, time_embed_dim) | |
| elif self.num_classes == "sequential": | |
| assert adm_in_channels is not None | |
| self.label_emb = nn.Sequential( | |
| nn.Sequential( | |
| nn.Linear(adm_in_channels, time_embed_dim), | |
| nn.SiLU(), | |
| nn.Linear(time_embed_dim, time_embed_dim), | |
| ) | |
| ) | |
| else: | |
| raise ValueError() | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| CondSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ] | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=mult * model_channels, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if num_attention_blocks is None or nr < num_attention_blocks[level]: | |
| layers.append( | |
| SpatialTransformer3D( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| context_dim=context_dim, | |
| depth=transformer_depth, | |
| ip_dim=self.ip_dim, | |
| ip_weight=self.ip_weight, | |
| ) | |
| ) | |
| self.input_blocks.append(CondSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| CondSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True, | |
| ) | |
| if resblock_updown | |
| else Downsample( | |
| ch, conv_resample, dims=dims, out_channels=out_ch | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| self.middle_block = CondSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| SpatialTransformer3D( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| context_dim=context_dim, | |
| depth=transformer_depth, | |
| ip_dim=self.ip_dim, | |
| ip_weight=self.ip_weight, | |
| ), | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| ) | |
| self._feature_size += ch | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(channel_mult))[::-1]: | |
| for i in range(self.num_res_blocks[level] + 1): | |
| ich = input_block_chans.pop() | |
| layers = [ | |
| ResBlock( | |
| ch + ich, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=model_channels * mult, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = model_channels * mult | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if num_attention_blocks is None or i < num_attention_blocks[level]: | |
| layers.append( | |
| SpatialTransformer3D( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| context_dim=context_dim, | |
| depth=transformer_depth, | |
| ip_dim=self.ip_dim, | |
| ip_weight=self.ip_weight, | |
| ) | |
| ) | |
| if level and i == self.num_res_blocks[level]: | |
| out_ch = ch | |
| layers.append( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| up=True, | |
| ) | |
| if resblock_updown | |
| else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ds //= 2 | |
| self.output_blocks.append(CondSequential(*layers)) | |
| self._feature_size += ch | |
| self.out = nn.Sequential( | |
| nn.GroupNorm(32, ch), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
| ) | |
| if self.predict_codebook_ids: | |
| self.id_predictor = nn.Sequential( | |
| nn.GroupNorm(32, ch), | |
| conv_nd(dims, model_channels, n_embed, 1), | |
| # nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits | |
| ) | |
| def forward( | |
| self, | |
| x, | |
| timesteps=None, | |
| context=None, | |
| y=None, | |
| camera=None, | |
| num_frames=1, | |
| ip=None, | |
| ip_img=None, | |
| **kwargs, | |
| ): | |
| """ | |
| Apply the model to an input batch. | |
| :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views). | |
| :param timesteps: a 1-D batch of timesteps. | |
| :param context: conditioning plugged in via crossattn | |
| :param y: an [N] Tensor of labels, if class-conditional. | |
| :param num_frames: a integer indicating number of frames for tensor reshaping. | |
| :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views). | |
| """ | |
| assert ( | |
| x.shape[0] % num_frames == 0 | |
| ), "input batch size must be dividable by num_frames!" | |
| assert (y is not None) == ( | |
| self.num_classes is not None | |
| ), "must specify y if and only if the model is class-conditional" | |
| hs = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
| emb = self.time_embed(t_emb) | |
| if self.num_classes is not None: | |
| assert y is not None | |
| assert y.shape[0] == x.shape[0] | |
| emb = emb + self.label_emb(y) | |
| # Add camera embeddings | |
| if camera is not None: | |
| emb = emb + self.camera_embed(camera) | |
| # imagedream variant | |
| if self.ip_dim > 0: | |
| x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9] | |
| ip_emb = self.image_embed(ip) | |
| context = torch.cat((context, ip_emb), 1) | |
| h = x | |
| for module in self.input_blocks: | |
| h = module(h, emb, context, num_frames=num_frames) | |
| hs.append(h) | |
| h = self.middle_block(h, emb, context, num_frames=num_frames) | |
| for module in self.output_blocks: | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context, num_frames=num_frames) | |
| h = h.type(x.dtype) | |
| if self.predict_codebook_ids: | |
| return self.id_predictor(h) | |
| else: | |
| return self.out(h) |