Create img_utils.py
Browse files- img_utils.py +172 -0
img_utils.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
from torchvision.utils import make_grid
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
| 10 |
+
"""Numpy array to tensor.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
imgs (list[ndarray] | ndarray): Input images.
|
| 14 |
+
bgr2rgb (bool): Whether to change bgr to rgb.
|
| 15 |
+
float32 (bool): Whether to change to float32.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
list[tensor] | tensor: Tensor images. If returned results only have
|
| 19 |
+
one element, just return tensor.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def _totensor(img, bgr2rgb, float32):
|
| 23 |
+
if img.shape[2] == 3 and bgr2rgb:
|
| 24 |
+
if img.dtype == 'float64':
|
| 25 |
+
img = img.astype('float32')
|
| 26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 27 |
+
img = torch.from_numpy(img.transpose(2, 0, 1))
|
| 28 |
+
if float32:
|
| 29 |
+
img = img.float()
|
| 30 |
+
return img
|
| 31 |
+
|
| 32 |
+
if isinstance(imgs, list):
|
| 33 |
+
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
| 34 |
+
else:
|
| 35 |
+
return _totensor(imgs, bgr2rgb, float32)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
| 39 |
+
"""Convert torch Tensors into image numpy arrays.
|
| 40 |
+
|
| 41 |
+
After clamping to [min, max], values will be normalized to [0, 1].
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
tensor (Tensor or list[Tensor]): Accept shapes:
|
| 45 |
+
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
| 46 |
+
2) 3D Tensor of shape (3/1 x H x W);
|
| 47 |
+
3) 2D Tensor of shape (H x W).
|
| 48 |
+
Tensor channel should be in RGB order.
|
| 49 |
+
rgb2bgr (bool): Whether to change rgb to bgr.
|
| 50 |
+
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
| 51 |
+
to uint8 type with range [0, 255]; otherwise, float type with
|
| 52 |
+
range [0, 1]. Default: ``np.uint8``.
|
| 53 |
+
min_max (tuple[int]): min and max values for clamp.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
| 57 |
+
shape (H x W). The channel order is BGR.
|
| 58 |
+
"""
|
| 59 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
| 60 |
+
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
| 61 |
+
|
| 62 |
+
if torch.is_tensor(tensor):
|
| 63 |
+
tensor = [tensor]
|
| 64 |
+
result = []
|
| 65 |
+
for _tensor in tensor:
|
| 66 |
+
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
| 67 |
+
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
| 68 |
+
|
| 69 |
+
n_dim = _tensor.dim()
|
| 70 |
+
if n_dim == 4:
|
| 71 |
+
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
| 72 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 73 |
+
if rgb2bgr:
|
| 74 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 75 |
+
elif n_dim == 3:
|
| 76 |
+
img_np = _tensor.numpy()
|
| 77 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 78 |
+
if img_np.shape[2] == 1: # gray image
|
| 79 |
+
img_np = np.squeeze(img_np, axis=2)
|
| 80 |
+
else:
|
| 81 |
+
if rgb2bgr:
|
| 82 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 83 |
+
elif n_dim == 2:
|
| 84 |
+
img_np = _tensor.numpy()
|
| 85 |
+
else:
|
| 86 |
+
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
| 87 |
+
if out_type == np.uint8:
|
| 88 |
+
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
| 89 |
+
img_np = (img_np * 255.0).round()
|
| 90 |
+
img_np = img_np.astype(out_type)
|
| 91 |
+
result.append(img_np)
|
| 92 |
+
if len(result) == 1:
|
| 93 |
+
result = result[0]
|
| 94 |
+
return result
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
|
| 98 |
+
"""This implementation is slightly faster than tensor2img.
|
| 99 |
+
It now only supports torch tensor with shape (1, c, h, w).
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
tensor (Tensor): Now only support torch tensor with (1, c, h, w).
|
| 103 |
+
rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
|
| 104 |
+
min_max (tuple[int]): min and max values for clamp.
|
| 105 |
+
"""
|
| 106 |
+
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
|
| 107 |
+
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
|
| 108 |
+
output = output.type(torch.uint8).cpu().numpy()
|
| 109 |
+
if rgb2bgr:
|
| 110 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
| 111 |
+
return output
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def imfrombytes(content, flag='color', float32=False):
|
| 115 |
+
"""Read an image from bytes.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
content (bytes): Image bytes got from files or other streams.
|
| 119 |
+
flag (str): Flags specifying the color type of a loaded image,
|
| 120 |
+
candidates are `color`, `grayscale` and `unchanged`.
|
| 121 |
+
float32 (bool): Whether to change to float32., If True, will also norm
|
| 122 |
+
to [0, 1]. Default: False.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
ndarray: Loaded image array.
|
| 126 |
+
"""
|
| 127 |
+
img_np = np.frombuffer(content, np.uint8)
|
| 128 |
+
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
|
| 129 |
+
img = cv2.imdecode(img_np, imread_flags[flag])
|
| 130 |
+
if float32:
|
| 131 |
+
img = img.astype(np.float32) / 255.
|
| 132 |
+
return img
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def imwrite(img, file_path, params=None, auto_mkdir=True):
|
| 136 |
+
"""Write image to file.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
img (ndarray): Image array to be written.
|
| 140 |
+
file_path (str): Image file path.
|
| 141 |
+
params (None or list): Same as opencv's :func:`imwrite` interface.
|
| 142 |
+
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
|
| 143 |
+
whether to create it automatically.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
bool: Successful or not.
|
| 147 |
+
"""
|
| 148 |
+
if auto_mkdir:
|
| 149 |
+
dir_name = os.path.abspath(os.path.dirname(file_path))
|
| 150 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 151 |
+
ok = cv2.imwrite(file_path, img, params)
|
| 152 |
+
if not ok:
|
| 153 |
+
raise IOError('Failed in writing images.')
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def crop_border(imgs, crop_border):
|
| 157 |
+
"""Crop borders of images.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
|
| 161 |
+
crop_border (int): Crop border for each end of height and weight.
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
list[ndarray]: Cropped images.
|
| 165 |
+
"""
|
| 166 |
+
if crop_border == 0:
|
| 167 |
+
return imgs
|
| 168 |
+
else:
|
| 169 |
+
if isinstance(imgs, list):
|
| 170 |
+
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
|
| 171 |
+
else:
|
| 172 |
+
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
|