Create realesrgan.py
Browse files- realesrgan.py +350 -0
realesrgan.py
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import queue
|
| 6 |
+
import threading
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
import requests
|
| 12 |
+
from torch.hub import download_url_to_file, get_dir
|
| 13 |
+
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
|
| 16 |
+
from .misc import sizeof_fmt
|
| 17 |
+
|
| 18 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 19 |
+
|
| 20 |
+
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
|
| 21 |
+
"""Load file form http url, will download models if necessary.
|
| 22 |
+
|
| 23 |
+
Reference: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
url (str): URL to be downloaded.
|
| 27 |
+
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
|
| 28 |
+
Default: None.
|
| 29 |
+
progress (bool): Whether to show the download progress. Default: True.
|
| 30 |
+
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
str: The path to the downloaded file.
|
| 34 |
+
"""
|
| 35 |
+
if model_dir is None: # use the pytorch hub_dir
|
| 36 |
+
hub_dir = get_dir()
|
| 37 |
+
model_dir = os.path.join(hub_dir, 'checkpoints')
|
| 38 |
+
|
| 39 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 40 |
+
|
| 41 |
+
parts = urlparse(url)
|
| 42 |
+
filename = os.path.basename(parts.path)
|
| 43 |
+
if file_name is not None:
|
| 44 |
+
filename = file_name
|
| 45 |
+
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
| 46 |
+
if not os.path.exists(cached_file):
|
| 47 |
+
print(f'Downloading: "{url}" to {cached_file}\n')
|
| 48 |
+
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
|
| 49 |
+
return cached_file
|
| 50 |
+
|
| 51 |
+
class RealESRGANer():
|
| 52 |
+
"""A helper class for upsampling images with RealESRGAN.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
| 56 |
+
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
| 57 |
+
model (nn.Module): The defined network. Default: None.
|
| 58 |
+
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
| 59 |
+
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
| 60 |
+
0 denotes for do not use tile. Default: 0.
|
| 61 |
+
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
| 62 |
+
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
| 63 |
+
half (float): Whether to use half precision during inference. Default: False.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(self,
|
| 67 |
+
scale,
|
| 68 |
+
model_path,
|
| 69 |
+
dni_weight=None,
|
| 70 |
+
model=None,
|
| 71 |
+
tile=0,
|
| 72 |
+
tile_pad=10,
|
| 73 |
+
pre_pad=10,
|
| 74 |
+
half=False,
|
| 75 |
+
device=None,
|
| 76 |
+
gpu_id=None):
|
| 77 |
+
self.scale = scale
|
| 78 |
+
self.tile_size = tile
|
| 79 |
+
self.tile_pad = tile_pad
|
| 80 |
+
self.pre_pad = pre_pad
|
| 81 |
+
self.mod_scale = None
|
| 82 |
+
self.half = half
|
| 83 |
+
|
| 84 |
+
# initialize model
|
| 85 |
+
if gpu_id:
|
| 86 |
+
self.device = torch.device(
|
| 87 |
+
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 88 |
+
else:
|
| 89 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 90 |
+
|
| 91 |
+
if isinstance(model_path, list):
|
| 92 |
+
# dni
|
| 93 |
+
assert len(model_path) == len(dni_weight), 'model_path and dni_weight should have the save length.'
|
| 94 |
+
loadnet = self.dni(model_path[0], model_path[1], dni_weight)
|
| 95 |
+
else:
|
| 96 |
+
# if the model_path starts with https, it will first download models to the folder: weights
|
| 97 |
+
if model_path.startswith('https://'):
|
| 98 |
+
model_path = load_file_from_url(
|
| 99 |
+
url=model_path, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
| 100 |
+
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
| 101 |
+
|
| 102 |
+
# prefer to use params_ema
|
| 103 |
+
if 'params_ema' in loadnet:
|
| 104 |
+
keyname = 'params_ema'
|
| 105 |
+
else:
|
| 106 |
+
keyname = 'params'
|
| 107 |
+
model.load_state_dict(loadnet[keyname], strict=True)
|
| 108 |
+
|
| 109 |
+
model.eval()
|
| 110 |
+
self.model = model.to(self.device)
|
| 111 |
+
if self.half:
|
| 112 |
+
self.model = self.model.half()
|
| 113 |
+
|
| 114 |
+
def dni(self, net_a, net_b, dni_weight, key='params', loc='cpu'):
|
| 115 |
+
"""Deep network interpolation.
|
| 116 |
+
|
| 117 |
+
``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition``
|
| 118 |
+
"""
|
| 119 |
+
net_a = torch.load(net_a, map_location=torch.device(loc))
|
| 120 |
+
net_b = torch.load(net_b, map_location=torch.device(loc))
|
| 121 |
+
for k, v_a in net_a[key].items():
|
| 122 |
+
net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k]
|
| 123 |
+
return net_a
|
| 124 |
+
|
| 125 |
+
def pre_process(self, img):
|
| 126 |
+
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
| 127 |
+
"""
|
| 128 |
+
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
| 129 |
+
self.img = img.unsqueeze(0).to(self.device)
|
| 130 |
+
if self.half:
|
| 131 |
+
self.img = self.img.half()
|
| 132 |
+
|
| 133 |
+
# pre_pad
|
| 134 |
+
if self.pre_pad != 0:
|
| 135 |
+
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
| 136 |
+
# mod pad for divisible borders
|
| 137 |
+
if self.scale == 2:
|
| 138 |
+
self.mod_scale = 2
|
| 139 |
+
elif self.scale == 1:
|
| 140 |
+
self.mod_scale = 4
|
| 141 |
+
if self.mod_scale is not None:
|
| 142 |
+
self.mod_pad_h, self.mod_pad_w = 0, 0
|
| 143 |
+
_, _, h, w = self.img.size()
|
| 144 |
+
if (h % self.mod_scale != 0):
|
| 145 |
+
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
| 146 |
+
if (w % self.mod_scale != 0):
|
| 147 |
+
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
| 148 |
+
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
| 149 |
+
|
| 150 |
+
def process(self):
|
| 151 |
+
# model inference
|
| 152 |
+
self.output = self.model(self.img)
|
| 153 |
+
|
| 154 |
+
def tile_process(self):
|
| 155 |
+
"""It will first crop input images to tiles, and then process each tile.
|
| 156 |
+
Finally, all the processed tiles are merged into one images.
|
| 157 |
+
|
| 158 |
+
Modified from: https://github.com/ata4/esrgan-launcher
|
| 159 |
+
"""
|
| 160 |
+
batch, channel, height, width = self.img.shape
|
| 161 |
+
output_height = height * self.scale
|
| 162 |
+
output_width = width * self.scale
|
| 163 |
+
output_shape = (batch, channel, output_height, output_width)
|
| 164 |
+
|
| 165 |
+
# start with black image
|
| 166 |
+
self.output = self.img.new_zeros(output_shape)
|
| 167 |
+
tiles_x = math.ceil(width / self.tile_size)
|
| 168 |
+
tiles_y = math.ceil(height / self.tile_size)
|
| 169 |
+
|
| 170 |
+
# loop over all tiles
|
| 171 |
+
for y in range(tiles_y):
|
| 172 |
+
for x in range(tiles_x):
|
| 173 |
+
# extract tile from input image
|
| 174 |
+
ofs_x = x * self.tile_size
|
| 175 |
+
ofs_y = y * self.tile_size
|
| 176 |
+
# input tile area on total image
|
| 177 |
+
input_start_x = ofs_x
|
| 178 |
+
input_end_x = min(ofs_x + self.tile_size, width)
|
| 179 |
+
input_start_y = ofs_y
|
| 180 |
+
input_end_y = min(ofs_y + self.tile_size, height)
|
| 181 |
+
|
| 182 |
+
# input tile area on total image with padding
|
| 183 |
+
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
| 184 |
+
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
| 185 |
+
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
| 186 |
+
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
| 187 |
+
|
| 188 |
+
# input tile dimensions
|
| 189 |
+
input_tile_width = input_end_x - input_start_x
|
| 190 |
+
input_tile_height = input_end_y - input_start_y
|
| 191 |
+
tile_idx = y * tiles_x + x + 1
|
| 192 |
+
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
| 193 |
+
|
| 194 |
+
# upscale tile
|
| 195 |
+
try:
|
| 196 |
+
with torch.no_grad():
|
| 197 |
+
output_tile = self.model(input_tile)
|
| 198 |
+
except RuntimeError as error:
|
| 199 |
+
print('Error', error)
|
| 200 |
+
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
| 201 |
+
|
| 202 |
+
# output tile area on total image
|
| 203 |
+
output_start_x = input_start_x * self.scale
|
| 204 |
+
output_end_x = input_end_x * self.scale
|
| 205 |
+
output_start_y = input_start_y * self.scale
|
| 206 |
+
output_end_y = input_end_y * self.scale
|
| 207 |
+
|
| 208 |
+
# output tile area without padding
|
| 209 |
+
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
| 210 |
+
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
| 211 |
+
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
| 212 |
+
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
| 213 |
+
|
| 214 |
+
# put tile into output image
|
| 215 |
+
self.output[:, :, output_start_y:output_end_y,
|
| 216 |
+
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
| 217 |
+
output_start_x_tile:output_end_x_tile]
|
| 218 |
+
|
| 219 |
+
def post_process(self):
|
| 220 |
+
# remove extra pad
|
| 221 |
+
if self.mod_scale is not None:
|
| 222 |
+
_, _, h, w = self.output.size()
|
| 223 |
+
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
| 224 |
+
# remove prepad
|
| 225 |
+
if self.pre_pad != 0:
|
| 226 |
+
_, _, h, w = self.output.size()
|
| 227 |
+
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
| 228 |
+
return self.output
|
| 229 |
+
|
| 230 |
+
@torch.no_grad()
|
| 231 |
+
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
| 232 |
+
h_input, w_input = img.shape[0:2]
|
| 233 |
+
# img: numpy
|
| 234 |
+
img = img.astype(np.float32)
|
| 235 |
+
if np.max(img) > 256: # 16-bit image
|
| 236 |
+
max_range = 65535
|
| 237 |
+
print('\tInput is a 16-bit image')
|
| 238 |
+
else:
|
| 239 |
+
max_range = 255
|
| 240 |
+
img = img / max_range
|
| 241 |
+
if len(img.shape) == 2: # gray image
|
| 242 |
+
img_mode = 'L'
|
| 243 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 244 |
+
elif img.shape[2] == 4: # RGBA image with alpha channel
|
| 245 |
+
img_mode = 'RGBA'
|
| 246 |
+
alpha = img[:, :, 3]
|
| 247 |
+
img = img[:, :, 0:3]
|
| 248 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 249 |
+
if alpha_upsampler == 'realesrgan':
|
| 250 |
+
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
| 251 |
+
else:
|
| 252 |
+
img_mode = 'RGB'
|
| 253 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 254 |
+
|
| 255 |
+
# ------------------- process image (without the alpha channel) ------------------- #
|
| 256 |
+
self.pre_process(img)
|
| 257 |
+
if self.tile_size > 0:
|
| 258 |
+
self.tile_process()
|
| 259 |
+
else:
|
| 260 |
+
self.process()
|
| 261 |
+
output_img = self.post_process()
|
| 262 |
+
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 263 |
+
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
| 264 |
+
if img_mode == 'L':
|
| 265 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
| 266 |
+
|
| 267 |
+
# ------------------- process the alpha channel if necessary ------------------- #
|
| 268 |
+
if img_mode == 'RGBA':
|
| 269 |
+
if alpha_upsampler == 'realesrgan':
|
| 270 |
+
self.pre_process(alpha)
|
| 271 |
+
if self.tile_size > 0:
|
| 272 |
+
self.tile_process()
|
| 273 |
+
else:
|
| 274 |
+
self.process()
|
| 275 |
+
output_alpha = self.post_process()
|
| 276 |
+
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 277 |
+
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
| 278 |
+
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
| 279 |
+
else: # use the cv2 resize for alpha channel
|
| 280 |
+
h, w = alpha.shape[0:2]
|
| 281 |
+
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
| 282 |
+
|
| 283 |
+
# merge the alpha channel
|
| 284 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
| 285 |
+
output_img[:, :, 3] = output_alpha
|
| 286 |
+
|
| 287 |
+
# ------------------------------ return ------------------------------ #
|
| 288 |
+
if max_range == 65535: # 16-bit image
|
| 289 |
+
output = (output_img * 65535.0).round().astype(np.uint16)
|
| 290 |
+
else:
|
| 291 |
+
output = (output_img * 255.0).round().astype(np.uint8)
|
| 292 |
+
|
| 293 |
+
if outscale is not None and outscale != float(self.scale):
|
| 294 |
+
output = cv2.resize(
|
| 295 |
+
output, (
|
| 296 |
+
int(w_input * outscale),
|
| 297 |
+
int(h_input * outscale),
|
| 298 |
+
), interpolation=cv2.INTER_LANCZOS4)
|
| 299 |
+
|
| 300 |
+
return output, img_mode
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class PrefetchReader(threading.Thread):
|
| 304 |
+
"""Prefetch images.
|
| 305 |
+
|
| 306 |
+
Args:
|
| 307 |
+
img_list (list[str]): A image list of image paths to be read.
|
| 308 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
| 309 |
+
"""
|
| 310 |
+
|
| 311 |
+
def __init__(self, img_list, num_prefetch_queue):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.que = queue.Queue(num_prefetch_queue)
|
| 314 |
+
self.img_list = img_list
|
| 315 |
+
|
| 316 |
+
def run(self):
|
| 317 |
+
for img_path in self.img_list:
|
| 318 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
| 319 |
+
self.que.put(img)
|
| 320 |
+
|
| 321 |
+
self.que.put(None)
|
| 322 |
+
|
| 323 |
+
def __next__(self):
|
| 324 |
+
next_item = self.que.get()
|
| 325 |
+
if next_item is None:
|
| 326 |
+
raise StopIteration
|
| 327 |
+
return next_item
|
| 328 |
+
|
| 329 |
+
def __iter__(self):
|
| 330 |
+
return self
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class IOConsumer(threading.Thread):
|
| 334 |
+
|
| 335 |
+
def __init__(self, opt, que, qid):
|
| 336 |
+
super().__init__()
|
| 337 |
+
self._queue = que
|
| 338 |
+
self.qid = qid
|
| 339 |
+
self.opt = opt
|
| 340 |
+
|
| 341 |
+
def run(self):
|
| 342 |
+
while True:
|
| 343 |
+
msg = self._queue.get()
|
| 344 |
+
if isinstance(msg, str) and msg == 'quit':
|
| 345 |
+
break
|
| 346 |
+
|
| 347 |
+
output = msg['output']
|
| 348 |
+
save_path = msg['save_path']
|
| 349 |
+
cv2.imwrite(save_path, output)
|
| 350 |
+
print(f'IO worker {self.qid} is done.')
|