add app
Browse files- .gitignore +1 -0
- .vscode/sftp.json +24 -0
- RestoreFormer.py +117 -0
- RestoreFormer_arch.py +742 -0
- app.py +132 -0
- packages.txt +3 -0
- requirements.txt +12 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_bk*
|
.vscode/sftp.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "wzhoux",
|
| 3 |
+
"host": "9.134.229.18",
|
| 4 |
+
"protocol": "sftp",
|
| 5 |
+
"port": 36000,
|
| 6 |
+
"username": "root",
|
| 7 |
+
"remotePath": "/group/30042/zhouxiawang/project/gradio/RestoreFormerPlusPlus",
|
| 8 |
+
"uploadOnSave": true,
|
| 9 |
+
"password": "Beagirl12#",
|
| 10 |
+
"ignore": [
|
| 11 |
+
".vscode",
|
| 12 |
+
".git",
|
| 13 |
+
".DS_Store",
|
| 14 |
+
".conda",
|
| 15 |
+
"./models",
|
| 16 |
+
"./logs",
|
| 17 |
+
"outputs",
|
| 18 |
+
"eggs",
|
| 19 |
+
".eggs",
|
| 20 |
+
"logs",
|
| 21 |
+
"experiments",
|
| 22 |
+
"./results"
|
| 23 |
+
]
|
| 24 |
+
}
|
RestoreFormer.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
from basicsr.utils import img2tensor, tensor2img
|
| 6 |
+
from basicsr.utils.download_util import load_file_from_url
|
| 7 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
| 8 |
+
from torchvision.transforms.functional import normalize
|
| 9 |
+
|
| 10 |
+
from RestoreFormer_arch import VQVAEGANMultiHeadTransformer
|
| 11 |
+
|
| 12 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class RestoreFormer():
|
| 16 |
+
"""Helper for restoration with RestoreFormer.
|
| 17 |
+
|
| 18 |
+
It will detect and crop faces, and then resize the faces to 512x512.
|
| 19 |
+
RestoreFormer is used to restored the resized faces.
|
| 20 |
+
The background is upsampled with the bg_upsampler.
|
| 21 |
+
Finally, the faces will be pasted back to the upsample background image.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
| 25 |
+
upscale (float): The upscale of the final output. Default: 2.
|
| 26 |
+
arch (str): The RestoreFormer architecture. Option: RestoreFormer | RestoreFormer++. Default: RestoreFormer++.
|
| 27 |
+
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, model_path, upscale=2, arch='RestoreFromerPlusPlus', bg_upsampler=None, device=None):
|
| 31 |
+
self.upscale = upscale
|
| 32 |
+
self.bg_upsampler = bg_upsampler
|
| 33 |
+
self.arch = arch
|
| 34 |
+
|
| 35 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
| 36 |
+
|
| 37 |
+
if arch == 'RestoreFormer':
|
| 38 |
+
self.RF = VQVAEGANMultiHeadTransformer(head_size = 8, ex_multi_scale_num = 0)
|
| 39 |
+
elif arch == 'RestoreFormer++':
|
| 40 |
+
self.RF = VQVAEGANMultiHeadTransformer(head_size = 4, ex_multi_scale_num = 1)
|
| 41 |
+
else:
|
| 42 |
+
raise NotImplementedError(f'Not support arch: {arch}.')
|
| 43 |
+
|
| 44 |
+
# initialize face helper
|
| 45 |
+
self.face_helper = FaceRestoreHelper(
|
| 46 |
+
upscale,
|
| 47 |
+
face_size=512,
|
| 48 |
+
crop_ratio=(1, 1),
|
| 49 |
+
det_model='retinaface_resnet50',
|
| 50 |
+
save_ext='png',
|
| 51 |
+
use_parse=True,
|
| 52 |
+
device=self.device,
|
| 53 |
+
model_rootpath=None)
|
| 54 |
+
|
| 55 |
+
if model_path.startswith('https://'):
|
| 56 |
+
model_path = load_file_from_url(
|
| 57 |
+
url=model_path, model_dir=os.path.join(ROOT_DIR, 'experiments/weights'), progress=True, file_name=None)
|
| 58 |
+
loadnet = torch.load(model_path)
|
| 59 |
+
|
| 60 |
+
strict=False
|
| 61 |
+
weights = loadnet['state_dict']
|
| 62 |
+
new_weights = {}
|
| 63 |
+
for k, v in weights.items():
|
| 64 |
+
if k.startswith('vqvae.'):
|
| 65 |
+
k = k.replace('vqvae.', '')
|
| 66 |
+
new_weights[k] = v
|
| 67 |
+
self.RF.load_state_dict(new_weights, strict=strict)
|
| 68 |
+
|
| 69 |
+
self.RF.eval()
|
| 70 |
+
self.RF = self.RF.to(self.device)
|
| 71 |
+
|
| 72 |
+
@torch.no_grad()
|
| 73 |
+
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
|
| 74 |
+
self.face_helper.clean_all()
|
| 75 |
+
|
| 76 |
+
if has_aligned: # the inputs are already aligned
|
| 77 |
+
img = cv2.resize(img, (512, 512))
|
| 78 |
+
self.face_helper.cropped_faces = [img]
|
| 79 |
+
else:
|
| 80 |
+
self.face_helper.read_image(img)
|
| 81 |
+
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
|
| 82 |
+
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
|
| 83 |
+
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
|
| 84 |
+
# align and warp each face
|
| 85 |
+
self.face_helper.align_warp_face()
|
| 86 |
+
|
| 87 |
+
# face restoration
|
| 88 |
+
for cropped_face in self.face_helper.cropped_faces:
|
| 89 |
+
# prepare data
|
| 90 |
+
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
| 91 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 92 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
output = self.RF(cropped_face_t)[0]
|
| 96 |
+
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
|
| 97 |
+
except RuntimeError as error:
|
| 98 |
+
print(f'\tFailed inference for RestoreFormer: {error}.')
|
| 99 |
+
restored_face = cropped_face
|
| 100 |
+
|
| 101 |
+
restored_face = restored_face.astype('uint8')
|
| 102 |
+
self.face_helper.add_restored_face(restored_face)
|
| 103 |
+
|
| 104 |
+
if not has_aligned and paste_back:
|
| 105 |
+
# upsample the background
|
| 106 |
+
if self.bg_upsampler is not None:
|
| 107 |
+
# Now only support RealESRGAN for upsampling background
|
| 108 |
+
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
|
| 109 |
+
else:
|
| 110 |
+
bg_img = None
|
| 111 |
+
|
| 112 |
+
self.face_helper.get_inverse_affine(None)
|
| 113 |
+
# paste each restored face to the input image
|
| 114 |
+
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
|
| 115 |
+
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
|
| 116 |
+
else:
|
| 117 |
+
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None
|
RestoreFormer_arch.py
ADDED
|
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class VectorQuantizer(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
| 10 |
+
____________________________________________
|
| 11 |
+
Discretization bottleneck part of the VQ-VAE.
|
| 12 |
+
Inputs:
|
| 13 |
+
- n_e : number of embeddings
|
| 14 |
+
- e_dim : dimension of embedding
|
| 15 |
+
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
| 16 |
+
_____________________________________________
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, n_e, e_dim, beta):
|
| 20 |
+
super(VectorQuantizer, self).__init__()
|
| 21 |
+
self.n_e = n_e
|
| 22 |
+
self.e_dim = e_dim
|
| 23 |
+
self.beta = beta
|
| 24 |
+
|
| 25 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 26 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 27 |
+
|
| 28 |
+
def forward(self, z):
|
| 29 |
+
"""
|
| 30 |
+
Inputs the output of the encoder network z and maps it to a discrete
|
| 31 |
+
one-hot vector that is the index of the closest embedding vector e_j
|
| 32 |
+
z (continuous) -> z_q (discrete)
|
| 33 |
+
z.shape = (batch, channel, height, width)
|
| 34 |
+
quantization pipeline:
|
| 35 |
+
1. get encoder input (B,C,H,W)
|
| 36 |
+
2. flatten input to (B*H*W,C)
|
| 37 |
+
"""
|
| 38 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 39 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
| 40 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 41 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 42 |
+
|
| 43 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 44 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
| 45 |
+
torch.matmul(z_flattened, self.embedding.weight.t())
|
| 46 |
+
|
| 47 |
+
## could possible replace this here
|
| 48 |
+
# #\start...
|
| 49 |
+
# find closest encodings
|
| 50 |
+
|
| 51 |
+
min_value, min_encoding_indices = torch.min(d, dim=1)
|
| 52 |
+
|
| 53 |
+
min_encoding_indices = min_encoding_indices.unsqueeze(1)
|
| 54 |
+
|
| 55 |
+
min_encodings = torch.zeros(
|
| 56 |
+
min_encoding_indices.shape[0], self.n_e).to(z)
|
| 57 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
| 58 |
+
|
| 59 |
+
# dtype min encodings: torch.float32
|
| 60 |
+
# min_encodings shape: torch.Size([2048, 512])
|
| 61 |
+
# min_encoding_indices.shape: torch.Size([2048, 1])
|
| 62 |
+
|
| 63 |
+
# get quantized latent vectors
|
| 64 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
| 65 |
+
#.........\end
|
| 66 |
+
|
| 67 |
+
# with:
|
| 68 |
+
# .........\start
|
| 69 |
+
#min_encoding_indices = torch.argmin(d, dim=1)
|
| 70 |
+
#z_q = self.embedding(min_encoding_indices)
|
| 71 |
+
# ......\end......... (TODO)
|
| 72 |
+
|
| 73 |
+
# compute loss for embedding
|
| 74 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
| 75 |
+
torch.mean((z_q - z.detach()) ** 2)
|
| 76 |
+
|
| 77 |
+
# preserve gradients
|
| 78 |
+
z_q = z + (z_q - z).detach()
|
| 79 |
+
|
| 80 |
+
# perplexity
|
| 81 |
+
|
| 82 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
| 83 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
| 84 |
+
|
| 85 |
+
# reshape back to match original input shape
|
| 86 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 87 |
+
|
| 88 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d)
|
| 89 |
+
|
| 90 |
+
def get_codebook_entry(self, indices, shape):
|
| 91 |
+
# shape specifying (batch, height, width, channel)
|
| 92 |
+
# TODO: check for more easy handling with nn.Embedding
|
| 93 |
+
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
| 94 |
+
min_encodings.scatter_(1, indices[:,None], 1)
|
| 95 |
+
|
| 96 |
+
# get quantized latent vectors
|
| 97 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
| 98 |
+
|
| 99 |
+
if shape is not None:
|
| 100 |
+
z_q = z_q.view(shape)
|
| 101 |
+
|
| 102 |
+
# reshape back to match original input shape
|
| 103 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 104 |
+
|
| 105 |
+
return z_q
|
| 106 |
+
|
| 107 |
+
# pytorch_diffusion + derived encoder decoder
|
| 108 |
+
def nonlinearity(x):
|
| 109 |
+
# swish
|
| 110 |
+
return x*torch.sigmoid(x)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def Normalize(in_channels):
|
| 114 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class Upsample(nn.Module):
|
| 118 |
+
def __init__(self, in_channels, with_conv):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.with_conv = with_conv
|
| 121 |
+
if self.with_conv:
|
| 122 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 123 |
+
in_channels,
|
| 124 |
+
kernel_size=3,
|
| 125 |
+
stride=1,
|
| 126 |
+
padding=1)
|
| 127 |
+
|
| 128 |
+
def forward(self, x):
|
| 129 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 130 |
+
if self.with_conv:
|
| 131 |
+
x = self.conv(x)
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class Downsample(nn.Module):
|
| 136 |
+
def __init__(self, in_channels, with_conv):
|
| 137 |
+
super().__init__()
|
| 138 |
+
self.with_conv = with_conv
|
| 139 |
+
if self.with_conv:
|
| 140 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 141 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 142 |
+
in_channels,
|
| 143 |
+
kernel_size=3,
|
| 144 |
+
stride=2,
|
| 145 |
+
padding=0)
|
| 146 |
+
|
| 147 |
+
def forward(self, x):
|
| 148 |
+
if self.with_conv:
|
| 149 |
+
pad = (0,1,0,1)
|
| 150 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 151 |
+
x = self.conv(x)
|
| 152 |
+
else:
|
| 153 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 154 |
+
return x
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class ResnetBlock(nn.Module):
|
| 158 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 159 |
+
dropout, temb_channels=512):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.in_channels = in_channels
|
| 162 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 163 |
+
self.out_channels = out_channels
|
| 164 |
+
self.use_conv_shortcut = conv_shortcut
|
| 165 |
+
|
| 166 |
+
self.norm1 = Normalize(in_channels)
|
| 167 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 168 |
+
out_channels,
|
| 169 |
+
kernel_size=3,
|
| 170 |
+
stride=1,
|
| 171 |
+
padding=1)
|
| 172 |
+
if temb_channels > 0:
|
| 173 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 174 |
+
out_channels)
|
| 175 |
+
self.norm2 = Normalize(out_channels)
|
| 176 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 177 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 178 |
+
out_channels,
|
| 179 |
+
kernel_size=3,
|
| 180 |
+
stride=1,
|
| 181 |
+
padding=1)
|
| 182 |
+
if self.in_channels != self.out_channels:
|
| 183 |
+
if self.use_conv_shortcut:
|
| 184 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 185 |
+
out_channels,
|
| 186 |
+
kernel_size=3,
|
| 187 |
+
stride=1,
|
| 188 |
+
padding=1)
|
| 189 |
+
else:
|
| 190 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 191 |
+
out_channels,
|
| 192 |
+
kernel_size=1,
|
| 193 |
+
stride=1,
|
| 194 |
+
padding=0)
|
| 195 |
+
|
| 196 |
+
def forward(self, x, temb):
|
| 197 |
+
h = x
|
| 198 |
+
h = self.norm1(h)
|
| 199 |
+
h = nonlinearity(h)
|
| 200 |
+
h = self.conv1(h)
|
| 201 |
+
|
| 202 |
+
if temb is not None:
|
| 203 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 204 |
+
|
| 205 |
+
h = self.norm2(h)
|
| 206 |
+
h = nonlinearity(h)
|
| 207 |
+
h = self.dropout(h)
|
| 208 |
+
h = self.conv2(h)
|
| 209 |
+
|
| 210 |
+
if self.in_channels != self.out_channels:
|
| 211 |
+
if self.use_conv_shortcut:
|
| 212 |
+
x = self.conv_shortcut(x)
|
| 213 |
+
else:
|
| 214 |
+
x = self.nin_shortcut(x)
|
| 215 |
+
|
| 216 |
+
return x+h
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class MultiHeadAttnBlock(nn.Module):
|
| 220 |
+
def __init__(self, in_channels, head_size=1):
|
| 221 |
+
super().__init__()
|
| 222 |
+
self.in_channels = in_channels
|
| 223 |
+
self.head_size = head_size
|
| 224 |
+
self.att_size = in_channels // head_size
|
| 225 |
+
assert(in_channels % head_size == 0), 'The size of head should be divided by the number of channels.'
|
| 226 |
+
|
| 227 |
+
self.norm1 = Normalize(in_channels)
|
| 228 |
+
self.norm2 = Normalize(in_channels)
|
| 229 |
+
|
| 230 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 231 |
+
in_channels,
|
| 232 |
+
kernel_size=1,
|
| 233 |
+
stride=1,
|
| 234 |
+
padding=0)
|
| 235 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 236 |
+
in_channels,
|
| 237 |
+
kernel_size=1,
|
| 238 |
+
stride=1,
|
| 239 |
+
padding=0)
|
| 240 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 241 |
+
in_channels,
|
| 242 |
+
kernel_size=1,
|
| 243 |
+
stride=1,
|
| 244 |
+
padding=0)
|
| 245 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 246 |
+
in_channels,
|
| 247 |
+
kernel_size=1,
|
| 248 |
+
stride=1,
|
| 249 |
+
padding=0)
|
| 250 |
+
self.num = 0
|
| 251 |
+
|
| 252 |
+
def forward(self, x, y=None):
|
| 253 |
+
h_ = x
|
| 254 |
+
h_ = self.norm1(h_)
|
| 255 |
+
if y is None:
|
| 256 |
+
y = h_
|
| 257 |
+
else:
|
| 258 |
+
y = self.norm2(y)
|
| 259 |
+
|
| 260 |
+
q = self.q(y)
|
| 261 |
+
k = self.k(h_)
|
| 262 |
+
v = self.v(h_)
|
| 263 |
+
|
| 264 |
+
# compute attention
|
| 265 |
+
b,c,h,w = q.shape
|
| 266 |
+
q = q.reshape(b, self.head_size, self.att_size ,h*w)
|
| 267 |
+
q = q.permute(0, 3, 1, 2) # b, hw, head, att
|
| 268 |
+
|
| 269 |
+
k = k.reshape(b, self.head_size, self.att_size ,h*w)
|
| 270 |
+
k = k.permute(0, 3, 1, 2)
|
| 271 |
+
|
| 272 |
+
v = v.reshape(b, self.head_size, self.att_size ,h*w)
|
| 273 |
+
v = v.permute(0, 3, 1, 2)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
q = q.transpose(1, 2)
|
| 277 |
+
v = v.transpose(1, 2)
|
| 278 |
+
k = k.transpose(1, 2).transpose(2,3)
|
| 279 |
+
|
| 280 |
+
scale = int(self.att_size)**(-0.5)
|
| 281 |
+
q.mul_(scale)
|
| 282 |
+
w_ = torch.matmul(q, k)
|
| 283 |
+
w_ = F.softmax(w_, dim=3)
|
| 284 |
+
|
| 285 |
+
w_ = w_.matmul(v)
|
| 286 |
+
|
| 287 |
+
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att]
|
| 288 |
+
w_ = w_.view(b, h, w, -1)
|
| 289 |
+
w_ = w_.permute(0, 3, 1, 2)
|
| 290 |
+
|
| 291 |
+
w_ = self.proj_out(w_)
|
| 292 |
+
|
| 293 |
+
return x+w_
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
class MultiHeadEncoder(nn.Module):
|
| 297 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
| 298 |
+
attn_resolutions=[16], dropout=0.0, resamp_with_conv=True, in_channels=3,
|
| 299 |
+
resolution=512, z_channels=256, double_z=True, enable_mid=True,
|
| 300 |
+
head_size=1, **ignore_kwargs):
|
| 301 |
+
super().__init__()
|
| 302 |
+
self.ch = ch
|
| 303 |
+
self.temb_ch = 0
|
| 304 |
+
self.num_resolutions = len(ch_mult)
|
| 305 |
+
self.num_res_blocks = num_res_blocks
|
| 306 |
+
self.resolution = resolution
|
| 307 |
+
self.in_channels = in_channels
|
| 308 |
+
self.enable_mid = enable_mid
|
| 309 |
+
|
| 310 |
+
# downsampling
|
| 311 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 312 |
+
self.ch,
|
| 313 |
+
kernel_size=3,
|
| 314 |
+
stride=1,
|
| 315 |
+
padding=1)
|
| 316 |
+
|
| 317 |
+
curr_res = resolution
|
| 318 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 319 |
+
self.down = nn.ModuleList()
|
| 320 |
+
for i_level in range(self.num_resolutions):
|
| 321 |
+
block = nn.ModuleList()
|
| 322 |
+
attn = nn.ModuleList()
|
| 323 |
+
block_in = ch*in_ch_mult[i_level]
|
| 324 |
+
block_out = ch*ch_mult[i_level]
|
| 325 |
+
for i_block in range(self.num_res_blocks):
|
| 326 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 327 |
+
out_channels=block_out,
|
| 328 |
+
temb_channels=self.temb_ch,
|
| 329 |
+
dropout=dropout))
|
| 330 |
+
block_in = block_out
|
| 331 |
+
if curr_res in attn_resolutions:
|
| 332 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
| 333 |
+
down = nn.Module()
|
| 334 |
+
down.block = block
|
| 335 |
+
down.attn = attn
|
| 336 |
+
if i_level != self.num_resolutions-1:
|
| 337 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 338 |
+
curr_res = curr_res // 2
|
| 339 |
+
self.down.append(down)
|
| 340 |
+
|
| 341 |
+
# middle
|
| 342 |
+
if self.enable_mid:
|
| 343 |
+
self.mid = nn.Module()
|
| 344 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 345 |
+
out_channels=block_in,
|
| 346 |
+
temb_channels=self.temb_ch,
|
| 347 |
+
dropout=dropout)
|
| 348 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
| 349 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 350 |
+
out_channels=block_in,
|
| 351 |
+
temb_channels=self.temb_ch,
|
| 352 |
+
dropout=dropout)
|
| 353 |
+
|
| 354 |
+
# end
|
| 355 |
+
self.norm_out = Normalize(block_in)
|
| 356 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 357 |
+
2*z_channels if double_z else z_channels,
|
| 358 |
+
kernel_size=3,
|
| 359 |
+
stride=1,
|
| 360 |
+
padding=1)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def forward(self, x):
|
| 364 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
| 365 |
+
|
| 366 |
+
hs = {}
|
| 367 |
+
# timestep embedding
|
| 368 |
+
temb = None
|
| 369 |
+
|
| 370 |
+
# downsampling
|
| 371 |
+
h = self.conv_in(x)
|
| 372 |
+
hs['in'] = h
|
| 373 |
+
for i_level in range(self.num_resolutions):
|
| 374 |
+
for i_block in range(self.num_res_blocks):
|
| 375 |
+
h = self.down[i_level].block[i_block](h, temb)
|
| 376 |
+
if len(self.down[i_level].attn) > 0:
|
| 377 |
+
h = self.down[i_level].attn[i_block](h)
|
| 378 |
+
|
| 379 |
+
if i_level != self.num_resolutions-1:
|
| 380 |
+
# hs.append(h)
|
| 381 |
+
hs['block_'+str(i_level)] = h
|
| 382 |
+
h = self.down[i_level].downsample(h)
|
| 383 |
+
|
| 384 |
+
# middle
|
| 385 |
+
# h = hs[-1]
|
| 386 |
+
if self.enable_mid:
|
| 387 |
+
h = self.mid.block_1(h, temb)
|
| 388 |
+
hs['block_'+str(i_level)+'_atten'] = h
|
| 389 |
+
h = self.mid.attn_1(h)
|
| 390 |
+
h = self.mid.block_2(h, temb)
|
| 391 |
+
hs['mid_atten'] = h
|
| 392 |
+
|
| 393 |
+
# end
|
| 394 |
+
h = self.norm_out(h)
|
| 395 |
+
h = nonlinearity(h)
|
| 396 |
+
h = self.conv_out(h)
|
| 397 |
+
# hs.append(h)
|
| 398 |
+
hs['out'] = h
|
| 399 |
+
|
| 400 |
+
return hs
|
| 401 |
+
|
| 402 |
+
class MultiHeadDecoder(nn.Module):
|
| 403 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
| 404 |
+
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3,
|
| 405 |
+
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True,
|
| 406 |
+
head_size=1, **ignorekwargs):
|
| 407 |
+
super().__init__()
|
| 408 |
+
self.ch = ch
|
| 409 |
+
self.temb_ch = 0
|
| 410 |
+
self.num_resolutions = len(ch_mult)
|
| 411 |
+
self.num_res_blocks = num_res_blocks
|
| 412 |
+
self.resolution = resolution
|
| 413 |
+
self.in_channels = in_channels
|
| 414 |
+
self.give_pre_end = give_pre_end
|
| 415 |
+
self.enable_mid = enable_mid
|
| 416 |
+
|
| 417 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 418 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 419 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 420 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 421 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 422 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 423 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 424 |
+
|
| 425 |
+
# z to block_in
|
| 426 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 427 |
+
block_in,
|
| 428 |
+
kernel_size=3,
|
| 429 |
+
stride=1,
|
| 430 |
+
padding=1)
|
| 431 |
+
|
| 432 |
+
# middle
|
| 433 |
+
if self.enable_mid:
|
| 434 |
+
self.mid = nn.Module()
|
| 435 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 436 |
+
out_channels=block_in,
|
| 437 |
+
temb_channels=self.temb_ch,
|
| 438 |
+
dropout=dropout)
|
| 439 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
| 440 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 441 |
+
out_channels=block_in,
|
| 442 |
+
temb_channels=self.temb_ch,
|
| 443 |
+
dropout=dropout)
|
| 444 |
+
|
| 445 |
+
# upsampling
|
| 446 |
+
self.up = nn.ModuleList()
|
| 447 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 448 |
+
block = nn.ModuleList()
|
| 449 |
+
attn = nn.ModuleList()
|
| 450 |
+
block_out = ch*ch_mult[i_level]
|
| 451 |
+
for i_block in range(self.num_res_blocks+1):
|
| 452 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 453 |
+
out_channels=block_out,
|
| 454 |
+
temb_channels=self.temb_ch,
|
| 455 |
+
dropout=dropout))
|
| 456 |
+
block_in = block_out
|
| 457 |
+
if curr_res in attn_resolutions:
|
| 458 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
| 459 |
+
up = nn.Module()
|
| 460 |
+
up.block = block
|
| 461 |
+
up.attn = attn
|
| 462 |
+
if i_level != 0:
|
| 463 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 464 |
+
curr_res = curr_res * 2
|
| 465 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 466 |
+
|
| 467 |
+
# end
|
| 468 |
+
self.norm_out = Normalize(block_in)
|
| 469 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 470 |
+
out_ch,
|
| 471 |
+
kernel_size=3,
|
| 472 |
+
stride=1,
|
| 473 |
+
padding=1)
|
| 474 |
+
|
| 475 |
+
def forward(self, z):
|
| 476 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 477 |
+
self.last_z_shape = z.shape
|
| 478 |
+
|
| 479 |
+
# timestep embedding
|
| 480 |
+
temb = None
|
| 481 |
+
|
| 482 |
+
# z to block_in
|
| 483 |
+
h = self.conv_in(z)
|
| 484 |
+
|
| 485 |
+
# middle
|
| 486 |
+
if self.enable_mid:
|
| 487 |
+
h = self.mid.block_1(h, temb)
|
| 488 |
+
h = self.mid.attn_1(h)
|
| 489 |
+
h = self.mid.block_2(h, temb)
|
| 490 |
+
|
| 491 |
+
# upsampling
|
| 492 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 493 |
+
for i_block in range(self.num_res_blocks+1):
|
| 494 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 495 |
+
if len(self.up[i_level].attn) > 0:
|
| 496 |
+
h = self.up[i_level].attn[i_block](h)
|
| 497 |
+
if i_level != 0:
|
| 498 |
+
h = self.up[i_level].upsample(h)
|
| 499 |
+
|
| 500 |
+
# end
|
| 501 |
+
if self.give_pre_end:
|
| 502 |
+
return h
|
| 503 |
+
|
| 504 |
+
h = self.norm_out(h)
|
| 505 |
+
h = nonlinearity(h)
|
| 506 |
+
h = self.conv_out(h)
|
| 507 |
+
return h
|
| 508 |
+
|
| 509 |
+
class MultiHeadDecoderTransformer(nn.Module):
|
| 510 |
+
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2,
|
| 511 |
+
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3,
|
| 512 |
+
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True,
|
| 513 |
+
head_size=1, **ignorekwargs):
|
| 514 |
+
super().__init__()
|
| 515 |
+
self.ch = ch
|
| 516 |
+
self.temb_ch = 0
|
| 517 |
+
self.num_resolutions = len(ch_mult)
|
| 518 |
+
self.num_res_blocks = num_res_blocks
|
| 519 |
+
self.resolution = resolution
|
| 520 |
+
self.in_channels = in_channels
|
| 521 |
+
self.give_pre_end = give_pre_end
|
| 522 |
+
self.enable_mid = enable_mid
|
| 523 |
+
|
| 524 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 525 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 526 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 527 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 528 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 529 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 530 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 531 |
+
|
| 532 |
+
# z to block_in
|
| 533 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 534 |
+
block_in,
|
| 535 |
+
kernel_size=3,
|
| 536 |
+
stride=1,
|
| 537 |
+
padding=1)
|
| 538 |
+
|
| 539 |
+
# middle
|
| 540 |
+
if self.enable_mid:
|
| 541 |
+
self.mid = nn.Module()
|
| 542 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 543 |
+
out_channels=block_in,
|
| 544 |
+
temb_channels=self.temb_ch,
|
| 545 |
+
dropout=dropout)
|
| 546 |
+
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
| 547 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 548 |
+
out_channels=block_in,
|
| 549 |
+
temb_channels=self.temb_ch,
|
| 550 |
+
dropout=dropout)
|
| 551 |
+
|
| 552 |
+
# upsampling
|
| 553 |
+
self.up = nn.ModuleList()
|
| 554 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 555 |
+
block = nn.ModuleList()
|
| 556 |
+
attn = nn.ModuleList()
|
| 557 |
+
block_out = ch*ch_mult[i_level]
|
| 558 |
+
for i_block in range(self.num_res_blocks+1):
|
| 559 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 560 |
+
out_channels=block_out,
|
| 561 |
+
temb_channels=self.temb_ch,
|
| 562 |
+
dropout=dropout))
|
| 563 |
+
block_in = block_out
|
| 564 |
+
if curr_res in attn_resolutions:
|
| 565 |
+
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
| 566 |
+
up = nn.Module()
|
| 567 |
+
up.block = block
|
| 568 |
+
up.attn = attn
|
| 569 |
+
if i_level != 0:
|
| 570 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 571 |
+
curr_res = curr_res * 2
|
| 572 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 573 |
+
|
| 574 |
+
# end
|
| 575 |
+
self.norm_out = Normalize(block_in)
|
| 576 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 577 |
+
out_ch,
|
| 578 |
+
kernel_size=3,
|
| 579 |
+
stride=1,
|
| 580 |
+
padding=1)
|
| 581 |
+
|
| 582 |
+
def forward(self, z, hs):
|
| 583 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 584 |
+
# self.last_z_shape = z.shape
|
| 585 |
+
|
| 586 |
+
# timestep embedding
|
| 587 |
+
temb = None
|
| 588 |
+
|
| 589 |
+
# z to block_in
|
| 590 |
+
h = self.conv_in(z)
|
| 591 |
+
|
| 592 |
+
# middle
|
| 593 |
+
if self.enable_mid:
|
| 594 |
+
h = self.mid.block_1(h, temb)
|
| 595 |
+
h = self.mid.attn_1(h, hs['mid_atten'])
|
| 596 |
+
h = self.mid.block_2(h, temb)
|
| 597 |
+
|
| 598 |
+
# upsampling
|
| 599 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 600 |
+
for i_block in range(self.num_res_blocks+1):
|
| 601 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 602 |
+
if len(self.up[i_level].attn) > 0:
|
| 603 |
+
if 'block_'+str(i_level)+'_atten' in hs:
|
| 604 |
+
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)+'_atten'])
|
| 605 |
+
else:
|
| 606 |
+
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)])
|
| 607 |
+
if i_level != 0:
|
| 608 |
+
h = self.up[i_level].upsample(h)
|
| 609 |
+
|
| 610 |
+
# end
|
| 611 |
+
if self.give_pre_end:
|
| 612 |
+
return h
|
| 613 |
+
|
| 614 |
+
h = self.norm_out(h)
|
| 615 |
+
h = nonlinearity(h)
|
| 616 |
+
h = self.conv_out(h)
|
| 617 |
+
return h
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
class VQVAEGAN(nn.Module):
|
| 621 |
+
def __init__(self, n_embed=1024, embed_dim=256, ch=128, out_ch=3, ch_mult=(1,2,4,8),
|
| 622 |
+
num_res_blocks=2, attn_resolutions=16, dropout=0.0, in_channels=3,
|
| 623 |
+
resolution=512, z_channels=256, double_z=False, enable_mid=True,
|
| 624 |
+
fix_decoder=False, fix_codebook=False, head_size=1, **ignore_kwargs):
|
| 625 |
+
super(VQVAEGAN, self).__init__()
|
| 626 |
+
|
| 627 |
+
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
| 628 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
| 629 |
+
resolution=resolution, z_channels=z_channels, double_z=double_z,
|
| 630 |
+
enable_mid=enable_mid, head_size=head_size)
|
| 631 |
+
self.decoder = MultiHeadDecoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
| 632 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
| 633 |
+
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size)
|
| 634 |
+
|
| 635 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
| 636 |
+
|
| 637 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
|
| 638 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
| 639 |
+
|
| 640 |
+
if fix_decoder:
|
| 641 |
+
for _, param in self.decoder.named_parameters():
|
| 642 |
+
param.requires_grad = False
|
| 643 |
+
for _, param in self.post_quant_conv.named_parameters():
|
| 644 |
+
param.requires_grad = False
|
| 645 |
+
for _, param in self.quantize.named_parameters():
|
| 646 |
+
param.requires_grad = False
|
| 647 |
+
elif fix_codebook:
|
| 648 |
+
for _, param in self.quantize.named_parameters():
|
| 649 |
+
param.requires_grad = False
|
| 650 |
+
|
| 651 |
+
def encode(self, x):
|
| 652 |
+
|
| 653 |
+
hs = self.encoder(x)
|
| 654 |
+
h = self.quant_conv(hs['out'])
|
| 655 |
+
quant, emb_loss, info = self.quantize(h)
|
| 656 |
+
return quant, emb_loss, info, hs
|
| 657 |
+
|
| 658 |
+
def decode(self, quant):
|
| 659 |
+
quant = self.post_quant_conv(quant)
|
| 660 |
+
dec = self.decoder(quant)
|
| 661 |
+
|
| 662 |
+
return dec
|
| 663 |
+
|
| 664 |
+
def forward(self, input):
|
| 665 |
+
quant, diff, info, hs = self.encode(input)
|
| 666 |
+
dec = self.decode(quant)
|
| 667 |
+
|
| 668 |
+
return dec, diff, info, hs
|
| 669 |
+
|
| 670 |
+
class VQVAEGANMultiHeadTransformer(nn.Module):
|
| 671 |
+
def __init__(self,
|
| 672 |
+
n_embed=1024,
|
| 673 |
+
embed_dim=256,
|
| 674 |
+
ch=64,
|
| 675 |
+
out_ch=3,
|
| 676 |
+
ch_mult=(1, 2, 2, 4, 4, 8),
|
| 677 |
+
num_res_blocks=2,
|
| 678 |
+
attn_resolutions=(16, ),
|
| 679 |
+
dropout=0.0,
|
| 680 |
+
in_channels=3,
|
| 681 |
+
resolution=512,
|
| 682 |
+
z_channels=256,
|
| 683 |
+
double_z=False,
|
| 684 |
+
enable_mid=True,
|
| 685 |
+
fix_decoder=False,
|
| 686 |
+
fix_codebook=True,
|
| 687 |
+
fix_encoder=False,
|
| 688 |
+
head_size=4,
|
| 689 |
+
ex_multi_scale_num=1):
|
| 690 |
+
super(VQVAEGANMultiHeadTransformer, self).__init__()
|
| 691 |
+
|
| 692 |
+
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
| 693 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
| 694 |
+
resolution=resolution, z_channels=z_channels, double_z=double_z,
|
| 695 |
+
enable_mid=enable_mid, head_size=head_size)
|
| 696 |
+
for i in range(ex_multi_scale_num):
|
| 697 |
+
attn_resolutions = [attn_resolutions[0], attn_resolutions[-1]*2]
|
| 698 |
+
self.decoder = MultiHeadDecoderTransformer(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
| 699 |
+
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels,
|
| 700 |
+
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size)
|
| 701 |
+
|
| 702 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
| 703 |
+
|
| 704 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
|
| 705 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
| 706 |
+
|
| 707 |
+
if fix_decoder:
|
| 708 |
+
for _, param in self.decoder.named_parameters():
|
| 709 |
+
param.requires_grad = False
|
| 710 |
+
for _, param in self.post_quant_conv.named_parameters():
|
| 711 |
+
param.requires_grad = False
|
| 712 |
+
for _, param in self.quantize.named_parameters():
|
| 713 |
+
param.requires_grad = False
|
| 714 |
+
elif fix_codebook:
|
| 715 |
+
for _, param in self.quantize.named_parameters():
|
| 716 |
+
param.requires_grad = False
|
| 717 |
+
|
| 718 |
+
if fix_encoder:
|
| 719 |
+
for _, param in self.encoder.named_parameters():
|
| 720 |
+
param.requires_grad = False
|
| 721 |
+
for _, param in self.quant_conv.named_parameters():
|
| 722 |
+
param.requires_grad = False
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
def encode(self, x):
|
| 726 |
+
|
| 727 |
+
hs = self.encoder(x)
|
| 728 |
+
h = self.quant_conv(hs['out'])
|
| 729 |
+
quant, emb_loss, info = self.quantize(h)
|
| 730 |
+
return quant, emb_loss, info, hs
|
| 731 |
+
|
| 732 |
+
def decode(self, quant, hs):
|
| 733 |
+
quant = self.post_quant_conv(quant)
|
| 734 |
+
dec = self.decoder(quant, hs)
|
| 735 |
+
|
| 736 |
+
return dec
|
| 737 |
+
|
| 738 |
+
def forward(self, input):
|
| 739 |
+
quant, diff, info, hs = self.encode(input)
|
| 740 |
+
dec = self.decode(quant, hs)
|
| 741 |
+
|
| 742 |
+
return dec, diff, info, hs
|
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
| 7 |
+
from realesrgan.utils import RealESRGANer
|
| 8 |
+
|
| 9 |
+
from RestoreFormer import RestoreFormer
|
| 10 |
+
|
| 11 |
+
os.system("pip freeze")
|
| 12 |
+
# download weights
|
| 13 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
| 14 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
| 15 |
+
if not os.path.exists('RestoreFormer.ckpt'):
|
| 16 |
+
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -P .")
|
| 17 |
+
if not os.path.exists('RestoreFormer++.pth'):
|
| 18 |
+
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -P .")
|
| 19 |
+
|
| 20 |
+
# torch.hub.download_url_to_file(
|
| 21 |
+
# 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
| 22 |
+
# 'lincoln.jpg')
|
| 23 |
+
# torch.hub.download_url_to_file(
|
| 24 |
+
# 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
| 25 |
+
# 'AI-generate.jpg')
|
| 26 |
+
# torch.hub.download_url_to_file(
|
| 27 |
+
# 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
| 28 |
+
# 'Blake_Lively.jpg')
|
| 29 |
+
# torch.hub.download_url_to_file(
|
| 30 |
+
# 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
| 31 |
+
# '10045.png')
|
| 32 |
+
|
| 33 |
+
# background enhancer with RealESRGAN
|
| 34 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
| 35 |
+
model_path = 'realesr-general-x4v3.pth'
|
| 36 |
+
half = True if torch.cuda.is_available() else False
|
| 37 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
| 38 |
+
|
| 39 |
+
os.makedirs('output', exist_ok=True)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# def inference(img, version, scale, weight):
|
| 43 |
+
def inference(img, version, scale):
|
| 44 |
+
# weight /= 100
|
| 45 |
+
print(img, version, scale)
|
| 46 |
+
if scale > 4:
|
| 47 |
+
scale = 4 # avoid too large scale value
|
| 48 |
+
try:
|
| 49 |
+
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
| 50 |
+
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
| 51 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
| 52 |
+
img_mode = 'RGBA'
|
| 53 |
+
elif len(img.shape) == 2: # for gray inputs
|
| 54 |
+
img_mode = None
|
| 55 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 56 |
+
else:
|
| 57 |
+
img_mode = None
|
| 58 |
+
|
| 59 |
+
h, w = img.shape[0:2]
|
| 60 |
+
if h > 3500 or w > 3500:
|
| 61 |
+
print('too large size')
|
| 62 |
+
return None, None
|
| 63 |
+
|
| 64 |
+
if h < 300:
|
| 65 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
| 66 |
+
|
| 67 |
+
if version == 'RestoreFormer':
|
| 68 |
+
face_enhancer = RestoreFormer(
|
| 69 |
+
model_path='RestoreFormer.ckpt', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
| 70 |
+
elif version == 'RestoreFormer++':
|
| 71 |
+
face_enhancer = RestoreFormer(
|
| 72 |
+
model_path='RestoreFormer++.ckpt', upscale=2, arch='RestoreFormer++', channel_multiplier=2, bg_upsampler=upsampler)
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
| 76 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
| 77 |
+
except RuntimeError as error:
|
| 78 |
+
print('Error', error)
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
if scale != 2:
|
| 82 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
| 83 |
+
h, w = img.shape[0:2]
|
| 84 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
| 85 |
+
except Exception as error:
|
| 86 |
+
print('wrong scale input.', error)
|
| 87 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
| 88 |
+
extension = 'png'
|
| 89 |
+
else:
|
| 90 |
+
extension = 'jpg'
|
| 91 |
+
save_path = f'output/out.{extension}'
|
| 92 |
+
cv2.imwrite(save_path, output)
|
| 93 |
+
|
| 94 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
| 95 |
+
return output, save_path
|
| 96 |
+
except Exception as error:
|
| 97 |
+
print('global exception', error)
|
| 98 |
+
return None, None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
title = "RestoreFormer: Blind Face Restoration Algorithm"
|
| 102 |
+
description = r"""Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>.<br>
|
| 103 |
+
It is used to restore your **old photos**.<br>
|
| 104 |
+
To use it, simply upload your image.<br>
|
| 105 |
+
"""
|
| 106 |
+
article = r"""
|
| 107 |
+
# [](https://github.com/TencentARC/GFPGAN/releases)
|
| 108 |
+
# [](https://github.com/TencentARC/GFPGAN)
|
| 109 |
+
[](https://arxiv.org/pdf/2308.07228.pdf)
|
| 110 |
+
[](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
|
| 111 |
+
If you have any question, please email 📧 `[email protected]`.
|
| 112 |
+
# <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
| 113 |
+
# <center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
| 114 |
+
"""
|
| 115 |
+
demo = gr.Interface(
|
| 116 |
+
inference, [
|
| 117 |
+
gr.Image(type="filepath", label="Input"),
|
| 118 |
+
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'),
|
| 119 |
+
gr.Number(label="Rescaling factor", value=2),
|
| 120 |
+
], [
|
| 121 |
+
gr.Image(type="numpy", label="Output (The whole image)"),
|
| 122 |
+
gr.File(label="Download the output image")
|
| 123 |
+
],
|
| 124 |
+
title=title,
|
| 125 |
+
description=description,
|
| 126 |
+
article=article,
|
| 127 |
+
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
| 128 |
+
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
| 129 |
+
# examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
| 130 |
+
# ['10045.png', 'v1.4', 2]]
|
| 131 |
+
)
|
| 132 |
+
demo.queue().launch(share=True)
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
| 2 |
+
libsm6
|
| 3 |
+
libxext6
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.7
|
| 2 |
+
basicsr>=1.4.2
|
| 3 |
+
facexlib>=0.2.5
|
| 4 |
+
realesrgan>=0.2.5
|
| 5 |
+
numpy
|
| 6 |
+
opencv-python
|
| 7 |
+
torchvision
|
| 8 |
+
scipy
|
| 9 |
+
tqdm
|
| 10 |
+
lmdb
|
| 11 |
+
pyyaml
|
| 12 |
+
yapf
|