File size: 6,028 Bytes
10e9b7d
89cdc9f
10e9b7d
3c4371f
89cdc9f
226bbb9
 
10e9b7d
226bbb9
 
e80aab9
226bbb9
89cdc9f
226bbb9
4021bf3
226bbb9
 
 
 
 
89cdc9f
226bbb9
89cdc9f
31243f4
 
 
 
7d65c66
89cdc9f
3c4371f
7e4a06b
280f38d
 
 
 
 
 
 
 
89cdc9f
3c4371f
7e4a06b
3c4371f
280f38d
 
 
b177367
36ed51a
c1fd3d2
226bbb9
 
 
89cdc9f
 
 
 
 
 
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
89cdc9f
 
 
7d65c66
 
e80aab9
89cdc9f
e80aab9
226bbb9
e80aab9
89cdc9f
7d65c66
3c4371f
89cdc9f
7d65c66
89cdc9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os

import gradio as gr
import pandas as pd
import requests
from langfuse import get_client
from openinference.instrumentation.smolagents import SmolagentsInstrumentor

from agent import BasicAgent
from fetch import DEFAULT_API_URL, fetch_questions, run_agent

submit_url = f"{DEFAULT_API_URL}/submit"

langfuse = get_client()

# Verify connection
if langfuse.auth_check():
    print("Langfuse client is authenticated and ready!")
else:
    print("Authentication failed. Please check your credentials and host.")

SmolagentsInstrumentor().instrument()
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        if profile.profile != os.getenv("HUGGINGFACE_PROFILE"):
            raise ValueError(
                "The logged-in user does not match the expected Hugging Face profile."
            )
        if profile.username != os.getenv("HUGGINGFACE_USERNAME"):
            raise ValueError(
                "The logged-in user does not match the expected Hugging Face username."
            )
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        raise ValueError(
            "You must log in to your Hugging Face account to run this evaluation."
        )
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)
    agent = BasicAgent()
    questions_data = fetch_questions()
    answers_payload, results_log = run_agent(agent, questions_data)
    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False
    )
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])


if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    demo.launch(debug=True, share=False)