|
from transformers import RobertaTokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small') |
|
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small') |
|
|
|
|
|
text = """ public static void main(String[] args) { |
|
|
|
int num = 29; |
|
boolean flag = false; |
|
for (int i = 2; i <= num / 2; ++i) { |
|
// condition for nonprime number |
|
if (num % i == 0) { |
|
flag = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!flag) |
|
System.out.println(num + " is a prime number."); |
|
else |
|
System.out.println(num + " is not a prime number."); |
|
} """ |
|
|
|
input_ids = tokenizer(text, return_tensors="pt").input_ids |
|
generated_ids = model.generate(input_ids, max_length=20) |
|
|
|
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) |
|
|