from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import re import requests import pytz import yaml import numpy as np from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def random_normal_draws(arg1: float, arg2: float)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that generates 10 draws from a normal distribution with mean and standard deviation given. Args: arg1: the mean of the distribution arg2: the standard deviation of the distribution (must be positive) """ try: if arg2 <= 0: return "Error: Standard deviation must be positive." rand_norm = np.random.normal(loc=arg1, scale=arg2, size=10) return ", ".join(f"{x:.2f}" for x in rand_norm) except Exception as e: return f"Error generating distribution: {e}" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def extract_fnol_info(email_text: str) -> str: """Extracts FNOL details (car make, injury type, date of incident) from a natural-language claim email. Args: email_text: The body of the claim email. Returns: A structured summary with the car make, injury type, and date of incident, or 'missing' if not found. """ prompt = f""" You are an assistant extracting First Notification of Loss (FNOL) information from an email. Extract the following from the email below: - Car make and model - Date of incident (in YYYY-MM-DD format if possible) - Injury type If any information is missing, say 'Missing'. Email: \"\"\" {email_text} \"\"\" Return in this format: Car: Date: Injury: """ return prompt final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[ final_answer, image_generation_tool, extract_fnol_info, get_current_time_in_timezone, # even though it's decorated random_normal_draws # same here ], max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()