- app.py +15 -103
- app_chatts.py +141 -0
app.py
CHANGED
@@ -29,111 +29,23 @@ model.eval()
|
|
29 |
|
30 |
|
31 |
# βββ INFERENCE + VALIDATION ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
The <name> is of length L: <ts><ts/>
|
42 |
-
5. Encode & generate (max_new_tokens=512).
|
43 |
-
6. Return Gradio LinePlot + generated text.
|
44 |
-
"""
|
45 |
-
# βββ CSV LOADING & PREPROCESSING ββββββββββββββββββββββββββββββ
|
46 |
-
df = pd.read_csv(csv_file.name, parse_dates=True, index_col=0)
|
47 |
-
|
48 |
-
# drop columns with empty names or all-NaNs
|
49 |
-
df.columns = [str(c).strip() for c in df.columns]
|
50 |
-
df = df.loc[:, [c for c in df.columns if c]]
|
51 |
-
df = df.dropna(axis=1, how="all")
|
52 |
-
|
53 |
-
if df.shape[1] == 0:
|
54 |
-
raise gr.Error("No valid time-series columns found.")
|
55 |
-
if df.shape[1] > 15:
|
56 |
-
raise gr.Error(f"Too many series ({df.shape[1]}). Max allowed = 15.")
|
57 |
-
|
58 |
-
ts_names, ts_list = [], []
|
59 |
-
for name in df.columns:
|
60 |
-
series = df[name]
|
61 |
-
# ensure float dtype
|
62 |
-
if not pd.api.types.is_float_dtype(series):
|
63 |
-
raise gr.Error(f"Series '{name}' must be float type.")
|
64 |
-
# trim trailing NaNs only
|
65 |
-
last_valid = series.last_valid_index()
|
66 |
-
if last_valid is None:
|
67 |
-
continue
|
68 |
-
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
|
69 |
-
length = trimmed.shape[0]
|
70 |
-
if length < 64 or length > 1024:
|
71 |
-
raise gr.Error(
|
72 |
-
f"Series '{name}' length {length} invalid. Must be 64 to 1024."
|
73 |
-
)
|
74 |
-
ts_names.append(name)
|
75 |
-
ts_list.append(trimmed)
|
76 |
-
|
77 |
-
if not ts_list:
|
78 |
-
raise gr.Error("All series are empty after trimming NaNs.")
|
79 |
-
|
80 |
-
# βββ BUILD PROMPT ββββββββββββββββββββββββββββββββββββββββββββββ
|
81 |
-
prefix = f"I have {len(ts_list)} time series:\n"
|
82 |
-
for name, arr in zip(ts_names, ts_list):
|
83 |
-
prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
|
84 |
-
full_prompt = prefix + prompt
|
85 |
-
|
86 |
-
# βββ ENCODE & GENERATE ββββββββββββββββββββββββββββββββββββββββ
|
87 |
-
inputs = processor(
|
88 |
-
text=[full_prompt],
|
89 |
-
timeseries=ts_list,
|
90 |
-
padding=True,
|
91 |
-
return_tensors="pt"
|
92 |
)
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# βββ VISUALIZATION ββββββββββββββββββββββββββββββββββββββββββββ
|
102 |
-
plot = gr.LinePlot(
|
103 |
-
df.reset_index(),
|
104 |
-
x=df.index.name or df.reset_index().columns[0],
|
105 |
-
y=ts_names,
|
106 |
-
label="Uploaded Time Series"
|
107 |
-
)
|
108 |
-
|
109 |
-
return plot, generated
|
110 |
-
|
111 |
-
|
112 |
-
# βββ GRADIO APP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
113 |
-
|
114 |
-
with gr.Blocks() as demo:
|
115 |
-
gr.Markdown("## ChatTS: Text + Time Series Inference Demo")
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
prompt_input = gr.Textbox(
|
119 |
-
lines=3,
|
120 |
-
placeholder="Enter your analysis promptβ¦",
|
121 |
-
label="Prompt"
|
122 |
-
)
|
123 |
-
upload = gr.UploadButton(
|
124 |
-
"Upload CSV (timestamp + float columns)",
|
125 |
-
file_types=[".csv"]
|
126 |
-
)
|
127 |
-
|
128 |
-
plot_out = gr.LinePlot(label="Time Series Visualization")
|
129 |
-
text_out = gr.Textbox(lines=8, label="Model Response")
|
130 |
-
|
131 |
-
run_btn = gr.Button("Run ChatTS")
|
132 |
-
run_btn.click(
|
133 |
-
fn=infer_chatts,
|
134 |
-
inputs=[prompt_input, upload],
|
135 |
-
outputs=[plot_out, text_out]
|
136 |
-
)
|
137 |
|
138 |
|
139 |
if __name__ == '__main__':
|
|
|
29 |
|
30 |
|
31 |
# βββ INFERENCE + VALIDATION ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
+
@spaces.gpu
|
33 |
+
def generate_text(prompt):
|
34 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
35 |
+
outputs = model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_new_tokens=512,
|
38 |
+
do_sample=True,
|
39 |
+
temperature=0.2,
|
40 |
+
top_p=0.9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
+
demo = gr.Interface(
|
45 |
+
fn=generate_text,
|
46 |
+
inputs=gr.Textbox(lines=2, label="Prompt"),
|
47 |
+
outputs=gr.Textbox(lines=6, label="Generated Text")
|
48 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
if __name__ == '__main__':
|
app_chatts.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces # for ZeroGPU support
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import subprocess
|
7 |
+
from transformers import (
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
AutoProcessor,
|
11 |
+
)
|
12 |
+
|
13 |
+
# βββ MODEL SETUP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
14 |
+
MODEL_NAME = "bytedance-research/ChatTS-14B"
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
MODEL_NAME, trust_remote_code=True
|
18 |
+
)
|
19 |
+
processor = AutoProcessor.from_pretrained(
|
20 |
+
MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer
|
21 |
+
)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
MODEL_NAME,
|
24 |
+
trust_remote_code=True,
|
25 |
+
device_map="auto",
|
26 |
+
torch_dtype=torch.float16
|
27 |
+
)
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
|
31 |
+
# βββ INFERENCE + VALIDATION ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
+
|
33 |
+
@spaces.GPU # dynamically allocate & release a ZeroGPU device on each call :contentReference[oaicite:0]{index=0}
|
34 |
+
def infer_chatts(prompt: str, csv_file):
|
35 |
+
"""
|
36 |
+
1. Load CSV: first column = timestamp, other columns = TS names.
|
37 |
+
2. Drop empty / all-NaN columns; enforce <=15 series.
|
38 |
+
3. For each series: trim trailing NaNs, enforce 64 β€ length β€ 1024.
|
39 |
+
4. Build prompt prefix as:
|
40 |
+
I have N time series:
|
41 |
+
The <name> is of length L: <ts><ts/>
|
42 |
+
5. Encode & generate (max_new_tokens=512).
|
43 |
+
6. Return Gradio LinePlot + generated text.
|
44 |
+
"""
|
45 |
+
# βββ CSV LOADING & PREPROCESSING ββββββββββββββββββββββββββββββ
|
46 |
+
df = pd.read_csv(csv_file.name, parse_dates=True, index_col=0)
|
47 |
+
|
48 |
+
# drop columns with empty names or all-NaNs
|
49 |
+
df.columns = [str(c).strip() for c in df.columns]
|
50 |
+
df = df.loc[:, [c for c in df.columns if c]]
|
51 |
+
df = df.dropna(axis=1, how="all")
|
52 |
+
|
53 |
+
if df.shape[1] == 0:
|
54 |
+
raise gr.Error("No valid time-series columns found.")
|
55 |
+
if df.shape[1] > 15:
|
56 |
+
raise gr.Error(f"Too many series ({df.shape[1]}). Max allowed = 15.")
|
57 |
+
|
58 |
+
ts_names, ts_list = [], []
|
59 |
+
for name in df.columns:
|
60 |
+
series = df[name]
|
61 |
+
# ensure float dtype
|
62 |
+
if not pd.api.types.is_float_dtype(series):
|
63 |
+
raise gr.Error(f"Series '{name}' must be float type.")
|
64 |
+
# trim trailing NaNs only
|
65 |
+
last_valid = series.last_valid_index()
|
66 |
+
if last_valid is None:
|
67 |
+
continue
|
68 |
+
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
|
69 |
+
length = trimmed.shape[0]
|
70 |
+
if length < 64 or length > 1024:
|
71 |
+
raise gr.Error(
|
72 |
+
f"Series '{name}' length {length} invalid. Must be 64 to 1024."
|
73 |
+
)
|
74 |
+
ts_names.append(name)
|
75 |
+
ts_list.append(trimmed)
|
76 |
+
|
77 |
+
if not ts_list:
|
78 |
+
raise gr.Error("All series are empty after trimming NaNs.")
|
79 |
+
|
80 |
+
# βββ BUILD PROMPT ββββββββββββββββββββββββββββββββββββββββββββββ
|
81 |
+
prefix = f"I have {len(ts_list)} time series:\n"
|
82 |
+
for name, arr in zip(ts_names, ts_list):
|
83 |
+
prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
|
84 |
+
full_prompt = prefix + prompt
|
85 |
+
|
86 |
+
# βββ ENCODE & GENERATE ββββββββββββββββββββββββββββββββββββββββ
|
87 |
+
inputs = processor(
|
88 |
+
text=[full_prompt],
|
89 |
+
timeseries=ts_list,
|
90 |
+
padding=True,
|
91 |
+
return_tensors="pt"
|
92 |
+
)
|
93 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
94 |
+
|
95 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
96 |
+
generated = tokenizer.decode(
|
97 |
+
outputs[0][ inputs["input_ids"].shape[-1] : ],
|
98 |
+
skip_special_tokens=True
|
99 |
+
)
|
100 |
+
|
101 |
+
# βββ VISUALIZATION ββββββββββββββββββββββββββββββββββββββββββββ
|
102 |
+
plot = gr.LinePlot(
|
103 |
+
df.reset_index(),
|
104 |
+
x=df.index.name or df.reset_index().columns[0],
|
105 |
+
y=ts_names,
|
106 |
+
label="Uploaded Time Series"
|
107 |
+
)
|
108 |
+
|
109 |
+
return plot, generated
|
110 |
+
|
111 |
+
|
112 |
+
# βββ GRADIO APP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
113 |
+
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
gr.Markdown("## ChatTS: Text + Time Series Inference Demo")
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
prompt_input = gr.Textbox(
|
119 |
+
lines=3,
|
120 |
+
placeholder="Enter your analysis promptβ¦",
|
121 |
+
label="Prompt"
|
122 |
+
)
|
123 |
+
upload = gr.UploadButton(
|
124 |
+
"Upload CSV (timestamp + float columns)",
|
125 |
+
file_types=[".csv"]
|
126 |
+
)
|
127 |
+
|
128 |
+
plot_out = gr.LinePlot(label="Time Series Visualization")
|
129 |
+
text_out = gr.Textbox(lines=8, label="Model Response")
|
130 |
+
|
131 |
+
run_btn = gr.Button("Run ChatTS")
|
132 |
+
run_btn.click(
|
133 |
+
fn=infer_chatts,
|
134 |
+
inputs=[prompt_input, upload],
|
135 |
+
outputs=[plot_out, text_out]
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
141 |
+
demo.launch()
|