xiezhe22 commited on
Commit
ff50632
Β·
verified Β·
1 Parent(s): 4b7ffa2

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +354 -0
app.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces # for ZeroGPU support
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import numpy as np
5
+ import torch
6
+ import subprocess
7
+ from threading import Thread
8
+ from transformers import (
9
+ AutoModelForCausalLM,
10
+ AutoTokenizer,
11
+ AutoProcessor,
12
+ TextIteratorStreamer
13
+ )
14
+
15
+ # ─── MODEL SETUP ────────────────────────────────────────────────────────────────
16
+ MODEL_NAME = "bytedance-research/ChatTS-14B"
17
+
18
+ tokenizer = AutoTokenizer.from_pretrained(
19
+ MODEL_NAME, trust_remote_code=True
20
+ )
21
+ processor = AutoProcessor.from_pretrained(
22
+ MODEL_NAME, trust_remote_code=True, tokenizer=tokenizer
23
+ )
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ MODEL_NAME,
26
+ trust_remote_code=True,
27
+ device_map="auto",
28
+ torch_dtype=torch.float16
29
+ )
30
+ model.eval()
31
+
32
+ # ─── HELPER FUNCTIONS ──────────────────────────────────────────────────────────
33
+
34
+ def create_default_timeseries():
35
+ """Create default time series with sudden increase"""
36
+ x1 = np.arange(256)
37
+ x2 = np.arange(256)
38
+ ts1 = np.sin(x1 / 10) * 5.0
39
+ ts1[103:] -= 10.0
40
+ ts2 = x2 * 0.01
41
+ ts2[100] += 10.0
42
+
43
+ df = pd.DataFrame({
44
+ "TS1": ts1,
45
+ "TS2": ts2
46
+ })
47
+ return df
48
+
49
+ def process_csv_file(csv_file):
50
+ """Process CSV file and return DataFrame with validation"""
51
+ if csv_file is None:
52
+ return None, "No file uploaded"
53
+
54
+ try:
55
+ df = pd.read_csv(csv_file.name)
56
+
57
+ # drop columns with empty names or all-NaNs
58
+ df.columns = [str(c).strip() for c in df.columns]
59
+ df = df.loc[:, [c for c in df.columns if c]]
60
+ df = df.dropna(axis=1, how="all")
61
+ print(f"File {csv_file.name} loaded. {df.columns=}")
62
+
63
+ if df.shape[1] == 0:
64
+ return None, "No valid time-series columns found."
65
+ if df.shape[1] > 15:
66
+ return None, f"Too many series ({df.shape[1]}). Max allowed = 15."
67
+
68
+ # Validate ALL columns as time series
69
+ ts_names, ts_list = [], []
70
+ for name in df.columns:
71
+ series = df[name]
72
+ # ensure float dtype
73
+ if not pd.api.types.is_float_dtype(series):
74
+ try:
75
+ series = pd.to_numeric(series, errors='coerce')
76
+ except:
77
+ return None, f"Series '{name}' cannot be converted to float type."
78
+
79
+ # trim trailing NaNs only
80
+ last_valid = series.last_valid_index()
81
+ if last_valid is None:
82
+ continue
83
+ trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
84
+ length = trimmed.shape[0]
85
+ if length < 64 or length > 1024:
86
+ return None, f"Series '{name}' length {length} invalid. Must be 64 to 1024."
87
+ ts_names.append(name)
88
+ ts_list.append(trimmed)
89
+
90
+ if not ts_list:
91
+ return None, "All time series are empty after trimming NaNs."
92
+ print(f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}")
93
+
94
+ return df, f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}"
95
+
96
+ except Exception as e:
97
+ return None, f"Error processing file: {str(e)}"
98
+
99
+ def preview_csv(csv_file, use_default):
100
+ """Preview uploaded CSV file immediately"""
101
+ if csv_file is None:
102
+ return gr.LinePlot(value=pd.DataFrame()), "Please upload a CSV file first", gr.Dropdown(), False
103
+
104
+ df, message = process_csv_file(csv_file)
105
+
106
+ if df is None:
107
+ return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown(), False
108
+
109
+ # Create dropdown choices
110
+ column_choices = list(df.columns)
111
+
112
+ # Create plot with first column as default
113
+ first_column = column_choices[0]
114
+ df_with_index = df.copy()
115
+ df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
116
+ plot = gr.LinePlot(
117
+ df_with_index,
118
+ x="_internal_idx",
119
+ y=first_column,
120
+ title=f"Time Series: {first_column}"
121
+ )
122
+
123
+ # Update dropdown
124
+ dropdown = gr.Dropdown(
125
+ choices=column_choices,
126
+ value=first_column,
127
+ label="Select a Column to Visualize"
128
+ )
129
+
130
+ print("Successfully generated preview!")
131
+
132
+ return plot, message, dropdown, False # Set use_default to False when file is uploaded
133
+
134
+ def clear_csv():
135
+ """Clear uploaded CSV file immediately"""
136
+ df, message = process_csv_file(None)
137
+
138
+ return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown()
139
+
140
+
141
+ def update_plot(csv_file, selected_column):
142
+ """Update plot based on selected column"""
143
+ if csv_file is None or selected_column is None:
144
+ return gr.LinePlot(value=pd.DataFrame())
145
+
146
+ df, _ = process_csv_file(csv_file)
147
+ if df is None:
148
+ return gr.LinePlot(value=pd.DataFrame())
149
+
150
+ df_with_index = df.copy()
151
+ df_with_index["_internal_idx"] = np.arange(len(df[selected_column].values))
152
+
153
+ plot = gr.LinePlot(
154
+ df_with_index,
155
+ x="_internal_idx",
156
+ y=selected_column,
157
+ title=f"Time Series: {selected_column}"
158
+ )
159
+
160
+ return plot
161
+
162
+ def initialize_interface():
163
+ """Initialize interface with default time series"""
164
+ df = create_default_timeseries()
165
+ column_choices = list(df.columns)
166
+ first_column = column_choices[0]
167
+
168
+ df_with_index = df.copy()
169
+ df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
170
+
171
+ plot = gr.LinePlot(
172
+ df_with_index,
173
+ x="_internal_idx",
174
+ y=first_column,
175
+ title=f"Time Series: {first_column}"
176
+ )
177
+
178
+ dropdown = gr.Dropdown(
179
+ choices=column_choices,
180
+ value=first_column,
181
+ label="Select a Column to Visualize"
182
+ )
183
+
184
+ message = "Using default time series with sudden increase at step 100"
185
+
186
+ return plot, message, dropdown, True # Set use_default to True on initialization
187
+
188
+ # ─── INFERENCE + VALIDATION ────────────────────────────────────────────────────
189
+
190
+ @spaces.GPU # dynamically allocate & release a ZeroGPU device on each call
191
+ def infer_chatts_stream(prompt: str, csv_file, use_default):
192
+ """
193
+ Streaming version of ChatTS inference
194
+ """
195
+ print("Start inferring!!!")
196
+
197
+ if not prompt.strip():
198
+ yield "Please enter a prompt"
199
+ return
200
+
201
+ # Use default if no file uploaded and use_default is True
202
+ if csv_file is None and use_default:
203
+ df = create_default_timeseries()
204
+ error_msg = None
205
+ else:
206
+ df, error_msg = process_csv_file(csv_file)
207
+
208
+ if df is None:
209
+ yield "Please upload a CSV file first or the file contains errors"
210
+ return
211
+
212
+ try:
213
+ # Prepare time series data - use ALL columns
214
+ ts_names, ts_list = [], []
215
+ for name in df.columns:
216
+ series = df[name]
217
+ last_valid = series.last_valid_index()
218
+ if last_valid is not None:
219
+ trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
220
+ ts_names.append(name)
221
+ ts_list.append(trimmed)
222
+
223
+ if not ts_list:
224
+ yield "No valid time series data found. Please upload time series first."
225
+ return
226
+
227
+ # Clean prompt
228
+ clean_prompt = prompt.replace("<ts>", "").replace("<ts/>", "")
229
+
230
+ # Build prompt prefix
231
+ prefix = f"I have {len(ts_list)} time series:\n"
232
+ for name, arr in zip(ts_names, ts_list):
233
+ prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
234
+
235
+ full_prompt = f"<|im_start|>system\nYou are a helpful assistant. Your name is ChatTS. You can analyze time series data and provide insights. If user asks who you are, you should give your name and capabilities in the language of the prompt. If no time series are provided, you should say 'I cannot answer this question as you haven't provide the timeseries I need' in the language of the prompt. Always check if the user has provided at least one time series data before answering.<|im_end|><|im_start|>user\n{prefix}{clean_prompt}<|im_end|><|im_start|>assistant\n"
236
+
237
+ print(f"[debug] {full_prompt}. {len(ts_list)=}, {[len(item) for item in ts_list]=}")
238
+
239
+ # Encode inputs
240
+ inputs = processor(
241
+ text=[full_prompt],
242
+ timeseries=ts_list,
243
+ padding=True,
244
+ return_tensors="pt"
245
+ )
246
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
247
+
248
+ if inputs['timeseries'] is not None:
249
+ print(f"[debug] {inputs['timeseries'].shape=}")
250
+
251
+ # Generate with streaming
252
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
253
+ inputs.update({
254
+ "max_new_tokens": 512,
255
+ "streamer": streamer,
256
+ "temperature": 0.3
257
+ })
258
+ thread = Thread(
259
+ target=model.generate,
260
+ kwargs=inputs
261
+ )
262
+ thread.start()
263
+
264
+ model_output = ""
265
+ for new_text in streamer:
266
+ model_output += new_text
267
+ yield model_output
268
+
269
+ except Exception as e:
270
+ yield f"Error during inference: {str(e)}"
271
+
272
+ # ─── GRADIO APP ────────────────────────────────────────────────────────────────
273
+
274
+ with gr.Blocks(title="ChatTS Demo") as demo:
275
+ gr.Markdown("## ChatTS: Time Series Understanding and Reasoning")
276
+ gr.HTML("""<div style="display:flex;justify-content: center">
277
+ <a href="https://github.com/NetmanAIOps/ChatTS"><img alt="github" src="https://img.shields.io/badge/Code-GitHub-blue"></a>
278
+ <a href="https://huggingface.co/bytedance-research/ChatTS-14B"><img alt="github" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-FFD21E"></a>
279
+ <a href="https://arxiv.org/abs/2412.03104"><img alt="preprint" src="https://img.shields.io/static/v1?label=arXiv&amp;message=2412.03104&amp;color=B31B1B&amp;logo=arXiv"></a>
280
+ </div>""")
281
+ gr.Markdown("Try ChatTS with the default time series, or upload a CSV file (Example: [ts_example.csv](https://github.com/NetManAIOps/ChatTS/blob/main/demo/ts_example.csv)) containing UTS/MTS where each column is a dimension (no index column). All columns will be used as input of ChatTS automatically.")
282
+
283
+ # State to track whether to use default time series
284
+ use_default_state = gr.State(value=True)
285
+
286
+ with gr.Row():
287
+ with gr.Column(scale=1):
288
+ upload = gr.File(
289
+ label="Upload CSV File",
290
+ file_types=[".csv"],
291
+ type="filepath"
292
+ )
293
+
294
+ prompt_input = gr.Textbox(
295
+ lines=6,
296
+ placeholder="Enter your question here...",
297
+ label="Analysis Prompt",
298
+ value="Please analyze all the given time series and provide insights about the local fluctuations in the time series in detail."
299
+ )
300
+
301
+ run_btn = gr.Button("Run ChatTS", variant="primary")
302
+
303
+ with gr.Column(scale=2):
304
+ series_selector = gr.Dropdown(
305
+ label="Select a Column to Visualize",
306
+ choices=[],
307
+ value=None
308
+ )
309
+ plot_out = gr.LinePlot(value=pd.DataFrame(), label="Time Series Visualization")
310
+ file_status = gr.Textbox(
311
+ label="File Status",
312
+ interactive=False,
313
+ lines=2
314
+ )
315
+
316
+ text_out = gr.Textbox(
317
+ lines=10,
318
+ label="ChatTS Analysis Results",
319
+ interactive=False
320
+ )
321
+
322
+ # Initialize interface with default data
323
+ demo.load(
324
+ fn=initialize_interface,
325
+ outputs=[plot_out, file_status, series_selector, use_default_state]
326
+ )
327
+
328
+ # Event handlers
329
+ upload.upload(
330
+ fn=preview_csv,
331
+ inputs=[upload, use_default_state],
332
+ outputs=[plot_out, file_status, series_selector, use_default_state]
333
+ )
334
+
335
+ upload.clear(
336
+ fn=clear_csv,
337
+ inputs=[],
338
+ outputs=[plot_out, file_status, series_selector]
339
+ )
340
+
341
+ series_selector.change(
342
+ fn=update_plot,
343
+ inputs=[upload, series_selector],
344
+ outputs=[plot_out]
345
+ )
346
+
347
+ run_btn.click(
348
+ fn=infer_chatts_stream,
349
+ inputs=[prompt_input, upload, use_default_state],
350
+ outputs=[text_out]
351
+ )
352
+
353
+ if __name__ == '__main__':
354
+ demo.launch()