Spaces:
Sleeping
Sleeping
xlr8
commited on
Commit
·
0be2076
1
Parent(s):
b50cb0b
try again
Browse files
models.py
CHANGED
@@ -2,6 +2,7 @@ from dataclasses import dataclass
|
|
2 |
|
3 |
import torch
|
4 |
import torch.nn as nn
|
|
|
5 |
import torchtune
|
6 |
from huggingface_hub import PyTorchModelHubMixin
|
7 |
from torchtune.models import llama3_2
|
@@ -67,35 +68,32 @@ def sample_topk_topp(
|
|
67 |
temperature: float,
|
68 |
) -> torch.Tensor:
|
69 |
"""
|
70 |
-
|
71 |
-
|
72 |
"""
|
73 |
-
# scale and softmax
|
74 |
scaled = logits / temperature
|
75 |
-
probs =
|
76 |
|
77 |
-
#
|
78 |
if topk < probs.size(-1):
|
79 |
topk_vals, topk_idx = torch.topk(probs, topk, dim=-1)
|
80 |
mask = torch.zeros_like(probs)
|
81 |
mask.scatter_(-1, topk_idx, topk_vals)
|
82 |
probs = mask
|
83 |
|
84 |
-
#
|
85 |
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
|
86 |
cumulative = torch.cumsum(sorted_probs, dim=-1)
|
87 |
-
|
88 |
-
|
89 |
|
90 |
probs_final = torch.zeros_like(probs)
|
91 |
-
probs_final.scatter_(-1, sorted_idx, sorted_probs *
|
92 |
|
93 |
-
# renormalize
|
94 |
probs_final = probs_final / probs_final.sum(dim=-1, keepdim=True)
|
95 |
|
96 |
-
# sample once per batch, keep that extra dim
|
97 |
-
|
98 |
-
return sample
|
99 |
|
100 |
|
101 |
@dataclass
|
@@ -118,9 +116,9 @@ class Model(
|
|
118 |
super().__init__()
|
119 |
self.config = config
|
120 |
|
121 |
-
#
|
122 |
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]())
|
123 |
-
# decoder
|
124 |
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]())
|
125 |
|
126 |
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
|
@@ -155,59 +153,46 @@ class Model(
|
|
155 |
@torch.inference_mode()
|
156 |
def generate_frame(
|
157 |
self,
|
158 |
-
tokens: torch.Tensor,
|
159 |
-
tokens_mask: torch.Tensor,
|
160 |
-
input_pos: torch.Tensor,
|
161 |
temperature: float,
|
162 |
topk: int,
|
163 |
top_p: float,
|
164 |
) -> torch.Tensor:
|
165 |
-
"""
|
166 |
-
tokens: (batch, seq, codebooks+1)
|
167 |
-
tokens_mask: (batch, seq, codebooks+1)
|
168 |
-
input_pos: (batch, seq)
|
169 |
-
Returns:
|
170 |
-
Tensor of shape (batch, codebooks) containing one new token per codebook.
|
171 |
-
"""
|
172 |
dtype = next(self.parameters()).dtype
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
bb_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
|
177 |
-
|
178 |
-
# embed and encode
|
179 |
embeds = self._embed_tokens(tokens)
|
180 |
-
h = self.backbone(
|
181 |
-
(embeds * tokens_mask.unsqueeze(-1)).sum(dim=2),
|
182 |
-
input_pos=input_pos,
|
183 |
-
mask=bb_mask,
|
184 |
-
).to(dtype=dtype)
|
185 |
|
186 |
-
#
|
187 |
last_h = h[:, -1, :] # (batch, hidden)
|
188 |
-
last_h_unsq = last_h.unsqueeze(1) # (batch,
|
189 |
|
190 |
-
#
|
191 |
-
c0_logits = self.codebook0_head(last_h)
|
192 |
c0_sample = sample_topk_topp(c0_logits, topk, top_p, temperature) # (batch,1)
|
193 |
-
c0_embed = self._embed_audio(0, c0_sample.squeeze(-1)).unsqueeze(1)
|
194 |
|
195 |
# Prepare for decoder
|
196 |
curr_h = torch.cat([last_h_unsq, c0_embed], dim=1) # (batch,2,hidden)
|
197 |
curr_sample = c0_sample.clone() # (batch,1)
|
198 |
curr_pos = torch.arange(0, curr_h.size(1)).unsqueeze(0).to(tokens.device).long() # (1,2)
|
199 |
|
200 |
-
#
|
201 |
self.decoder.reset_caches()
|
202 |
for i in range(1, self.config.audio_num_codebooks):
|
203 |
-
|
204 |
-
dec_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=
|
|
|
205 |
ci_logits = torch.mm(dec_h[:, -1, :], self.audio_head[i - 1]) # (batch, vocab)
|
206 |
ci_sample = sample_topk_topp(ci_logits, topk, top_p, temperature) # (batch,1)
|
207 |
ci_embed = self._embed_audio(i, ci_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden)
|
208 |
|
209 |
curr_h = ci_embed
|
210 |
-
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) # (batch,
|
211 |
curr_pos = curr_pos[:, -1:] + 1
|
212 |
|
213 |
return curr_sample # (batch, audio_num_codebooks)
|
@@ -218,7 +203,7 @@ class Model(
|
|
218 |
|
219 |
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
|
220 |
"""
|
221 |
-
tokens: (batch,)
|
222 |
returns: (batch, hidden)
|
223 |
"""
|
224 |
ids = tokens + codebook * self.config.audio_vocab_size
|
@@ -229,26 +214,15 @@ class Model(
|
|
229 |
tokens: (batch, seq, codebooks+1)
|
230 |
returns: (batch, seq, codebooks+1, hidden)
|
231 |
"""
|
232 |
-
# text part (last index of 33)
|
233 |
text_ids = tokens[:, :, -1]
|
234 |
-
text_emb = self.text_embeddings(text_ids).unsqueeze(-2)
|
235 |
-
|
236 |
-
# audio codebooks
|
237 |
audio_ids = tokens[:, :, :-1] + (
|
238 |
self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
|
239 |
-
)
|
240 |
audio_emb = (
|
241 |
-
self.audio_embeddings(audio_ids.reshape(-1))
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
|
246 |
-
return torch.cat([audio_emb, text_emb], dim=2) # (batch, seq, codebooks+1, hidden)
|
247 |
|
248 |
-
@classmethod
|
249 |
-
def from_pretrained(cls, repo_id: str):
|
250 |
-
# load args & state from HF repo, e.g. sesame/csm-1b or your fine-tuned xlr8harder model
|
251 |
-
config = cls._load_config(repo_id) # uses PyTorchModelHubMixin behind the scenes
|
252 |
-
model = cls(config)
|
253 |
-
model.load_state_dict(model._load_state_dict(repo_id), strict=False)
|
254 |
-
return model
|
|
|
2 |
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
import torchtune
|
7 |
from huggingface_hub import PyTorchModelHubMixin
|
8 |
from torchtune.models import llama3_2
|
|
|
68 |
temperature: float,
|
69 |
) -> torch.Tensor:
|
70 |
"""
|
71 |
+
Apply top-k, then nucleus (top-p), then sample.
|
72 |
+
Returns a tensor of shape (batch_size, 1).
|
73 |
"""
|
|
|
74 |
scaled = logits / temperature
|
75 |
+
probs = F.softmax(scaled, dim=-1)
|
76 |
|
77 |
+
# Top-k
|
78 |
if topk < probs.size(-1):
|
79 |
topk_vals, topk_idx = torch.topk(probs, topk, dim=-1)
|
80 |
mask = torch.zeros_like(probs)
|
81 |
mask.scatter_(-1, topk_idx, topk_vals)
|
82 |
probs = mask
|
83 |
|
84 |
+
# Nucleus (top-p)
|
85 |
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
|
86 |
cumulative = torch.cumsum(sorted_probs, dim=-1)
|
87 |
+
keep = cumulative <= top_p
|
88 |
+
keep[..., 0] = True # always keep top token
|
89 |
|
90 |
probs_final = torch.zeros_like(probs)
|
91 |
+
probs_final.scatter_(-1, sorted_idx, sorted_probs * keep.float())
|
92 |
|
|
|
93 |
probs_final = probs_final / probs_final.sum(dim=-1, keepdim=True)
|
94 |
|
95 |
+
# sample once per batch, keep that extra dim
|
96 |
+
return torch.multinomial(probs_final, num_samples=1) # (batch, 1)
|
|
|
97 |
|
98 |
|
99 |
@dataclass
|
|
|
116 |
super().__init__()
|
117 |
self.config = config
|
118 |
|
119 |
+
# Text + audio backbone
|
120 |
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[config.backbone_flavor]())
|
121 |
+
# Audio decoder
|
122 |
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[config.decoder_flavor]())
|
123 |
|
124 |
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
|
|
|
153 |
@torch.inference_mode()
|
154 |
def generate_frame(
|
155 |
self,
|
156 |
+
tokens: torch.Tensor, # (batch, seq, codebooks+1)
|
157 |
+
tokens_mask: torch.Tensor, # (batch, seq, codebooks+1)
|
158 |
+
input_pos: torch.Tensor, # (batch, seq)
|
159 |
temperature: float,
|
160 |
topk: int,
|
161 |
top_p: float,
|
162 |
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
dtype = next(self.parameters()).dtype
|
164 |
|
165 |
+
# Backbone forward
|
166 |
+
mask_bb = _index_causal_mask(self.backbone_causal_mask, input_pos)
|
|
|
|
|
|
|
167 |
embeds = self._embed_tokens(tokens)
|
168 |
+
h = self.backbone((embeds * tokens_mask.unsqueeze(-1)).sum(dim=2), input_pos=input_pos, mask=mask_bb).to(dtype=dtype)
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Last hidden
|
171 |
last_h = h[:, -1, :] # (batch, hidden)
|
172 |
+
last_h_unsq = last_h.unsqueeze(1) # (batch,1,hidden)
|
173 |
|
174 |
+
# Codebook 0
|
175 |
+
c0_logits = self.codebook0_head(last_h) # (batch, vocab)
|
176 |
c0_sample = sample_topk_topp(c0_logits, topk, top_p, temperature) # (batch,1)
|
177 |
+
c0_embed = self._embed_audio(0, c0_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden)
|
178 |
|
179 |
# Prepare for decoder
|
180 |
curr_h = torch.cat([last_h_unsq, c0_embed], dim=1) # (batch,2,hidden)
|
181 |
curr_sample = c0_sample.clone() # (batch,1)
|
182 |
curr_pos = torch.arange(0, curr_h.size(1)).unsqueeze(0).to(tokens.device).long() # (1,2)
|
183 |
|
184 |
+
# Remaining codebooks
|
185 |
self.decoder.reset_caches()
|
186 |
for i in range(1, self.config.audio_num_codebooks):
|
187 |
+
mask_dec = _index_causal_mask(self.decoder_causal_mask, curr_pos)
|
188 |
+
dec_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=mask_dec).to(dtype=dtype)
|
189 |
+
|
190 |
ci_logits = torch.mm(dec_h[:, -1, :], self.audio_head[i - 1]) # (batch, vocab)
|
191 |
ci_sample = sample_topk_topp(ci_logits, topk, top_p, temperature) # (batch,1)
|
192 |
ci_embed = self._embed_audio(i, ci_sample.squeeze(-1)).unsqueeze(1) # (batch,1,hidden)
|
193 |
|
194 |
curr_h = ci_embed
|
195 |
+
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) # (batch,i+1)
|
196 |
curr_pos = curr_pos[:, -1:] + 1
|
197 |
|
198 |
return curr_sample # (batch, audio_num_codebooks)
|
|
|
203 |
|
204 |
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
|
205 |
"""
|
206 |
+
tokens: (batch,) token IDs for this codebook
|
207 |
returns: (batch, hidden)
|
208 |
"""
|
209 |
ids = tokens + codebook * self.config.audio_vocab_size
|
|
|
214 |
tokens: (batch, seq, codebooks+1)
|
215 |
returns: (batch, seq, codebooks+1, hidden)
|
216 |
"""
|
|
|
217 |
text_ids = tokens[:, :, -1]
|
218 |
+
text_emb = self.text_embeddings(text_ids).unsqueeze(-2)
|
|
|
|
|
219 |
audio_ids = tokens[:, :, :-1] + (
|
220 |
self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
|
221 |
+
)
|
222 |
audio_emb = (
|
223 |
+
self.audio_embeddings(audio_ids.reshape(-1))
|
224 |
+
.reshape(tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1)
|
225 |
+
)
|
226 |
+
return torch.cat([audio_emb, text_emb], dim=2)
|
227 |
|
|
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|