import gradio as gr import os api_key = os.environ.get("HUGGINGFACE_API_KEY") model_list = [ "stabilityai/stable-diffusion-xl-base-0.9", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-xl-refiner-0.9", "stabilityai/stable-diffusion-2-1-base", "stabilityai/stable-diffusion-2", "stabilityai/stable-diffusion-2-inpainting", "stabilityai/stable-diffusion-x4-upscaler", "stabilityai/stable-diffusion-2-depth", "stabilityai/stable-diffusion-2-base", "stabilityai/stable-diffusion-2-1-unclip", "helenai/stabilityai-stable-diffusion-2-1-base-ov", "helenai/stabilityai-stable-diffusion-2-1-ov", "stabilityai/stable-diffusion-2-1-unclip-small" ] default_model = "stabilityai/stable-diffusion-2" model_name = gr.inputs.Dropdown(choices=model_list, label="Select Model", default=default_model) def generate_image(text, model_name): model = gr.Interface.load(model_name, source="huggingface", api_key=api_key) return model.predict(text) input_text = gr.inputs.Textbox(label="Input Text") output_image = gr.outputs.Image(label="Generated Image") iface = gr.Interface( fn=generate_image, inputs=[input_text, model_name], outputs=output_image, title="Text to Image Generation", description="Generate an image from input text using a Hugging Face model." ) iface.launch()