xnetba commited on
Commit
325e775
·
1 Parent(s): 38266d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -0
app.py CHANGED
@@ -1,5 +1,58 @@
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  def greet(name):
4
  return "Hello " + name + "!!"
5
 
 
1
  import gradio as gr
2
 
3
+ # Initialize your model: Use the Hugging Face library to initialize your model with the chosen pre-trained model architecture
4
+ from transformers import BertForSequenceClassification
5
+ model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
6
+
7
+ #Tokenize your data: Tokenize your input data using the tokenizer provided by Hugging Face for the specific model you're using.
8
+ #This step converts text inputs into numerical representations that the model can process.
9
+ from transformers import BertTokenizer
10
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
11
+
12
+ #Tokenize the input text
13
+ text = "Hello, how are you?"
14
+ tokens = tokenizer.encode(text, add_special_tokens=True)
15
+
16
+ #Convert tokens to input IDs
17
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
18
+
19
+ #Attention masks
20
+ attention_mask = tokenizer.create_attention_mask(input_ids)
21
+
22
+ #Create data loaders: Create data loaders or data iterators to efficiently load and batch your tokenized data during training.
23
+ #Hugging Face provides tools like DataLoader or DataProcessor for this purpose.
24
+ from transformers import DataLoader
25
+
26
+ #Prepare your tokenized data and Create a dataset
27
+ from torch.utils.data import TensorDataset
28
+ dataset = TensorDataset(input_ids, attention_mask, labels)
29
+
30
+ #Create a data loader
31
+ batch_size = 32
32
+ shuffle = True
33
+ data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
34
+
35
+ #Iterate through the data loader and perform training step using the batched data
36
+ for batch in data_loader:
37
+ input_ids_batch, attention_mask_batch, labels_batch = batch
38
+
39
+ #Define your training loop: Write the training loop using PyTorch or TensorFlow, depending on the framework supported by the Hugging Face model you are using.
40
+ #Within the loop, you'll need to define the loss function, optimizer, and any additional metrics you want to track.
41
+ import torch
42
+ import torch.nn as nn
43
+ import torch.optim as optim
44
+
45
+ learning_rate = 0.001
46
+ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
47
+
48
+ #Fine-tune the model: Train the model on your dataset using the training loop.
49
+ #Adjust the hyperparameters such as learning rate, batch size, and number of epochs to optimize performance.
50
+ #Monitor the validation set metrics to avoid overfitting and select the best model based on these metrics.
51
+
52
+
53
+ #Evaluate the model: Once training is complete, evaluate the performance of your trained model on the test set. Calculate relevant metrics such as accuracy, precision, recall, or F1 score.
54
+ #Save and load the model: Save the trained model parameters to disk so that you can later load and use it for predictions without having to retrain from scratch.
55
+
56
  def greet(name):
57
  return "Hello " + name + "!!"
58