xnileshtiwari commited on
Commit
ca85e97
·
verified ·
1 Parent(s): f2a3e24

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #credit to https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb for segmentation code
2
+ import streamlit as st
3
+
4
+ st.title("Segmentation of Beauty Products")
5
+
6
+ file_name = st.file_uploader("Upload an image of a beauty product")
7
+
8
+
9
+ from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
10
+ import torch
11
+
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+
14
+ model_name = "nvidia/segformer-b5-finetuned-ade-640-640"
15
+ feature_extractor = SegformerImageProcessor.from_pretrained(model_name)
16
+ model = SegformerForSemanticSegmentation.from_pretrained(model_name)
17
+ model.to(device)
18
+
19
+
20
+ from datasets import load_dataset
21
+ from PIL import Image
22
+
23
+ if file_name is not None:
24
+ image = Image.open(file_name)
25
+ st.image(image, caption='Image without Segmentation')
26
+
27
+ pixel_values = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
28
+
29
+ outputs = model(pixel_values)
30
+ logits = outputs.logits
31
+
32
+ def ade_palette():
33
+ return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
34
+ [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
35
+ [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
36
+ [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
37
+ [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
38
+ [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
39
+ [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
40
+ [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
41
+ [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
42
+ [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
43
+ [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
44
+ [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
45
+ [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
46
+ [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
47
+ [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
48
+ [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
49
+ [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
50
+ [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
51
+ [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
52
+ [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
53
+ [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
54
+ [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
55
+ [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
56
+ [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
57
+ [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
58
+ [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
59
+ [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
60
+ [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
61
+ [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
62
+ [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
63
+ [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
64
+ [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
65
+ [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
66
+ [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
67
+ [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
68
+ [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
69
+ [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
70
+ [102, 255, 0], [92, 0, 255]]
71
+
72
+ from torch import nn
73
+ import numpy as np
74
+ import matplotlib.pyplot as plt
75
+
76
+ logits = nn.functional.interpolate(outputs.logits.detach().cpu(),
77
+ size=image.size[::-1],
78
+ mode='bilinear',
79
+ align_corners=False)
80
+ seg = logits.argmax(dim=1)[0]
81
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
82
+ palette = np.array(ade_palette())
83
+ for label, color in enumerate(palette):
84
+ color_seg[seg == label, :] = color
85
+
86
+ color_seg = color_seg[..., ::-1]
87
+
88
+ img = np.array(image) * 0.5 + color_seg * 0.5
89
+ img = img.astype(np.uint8)
90
+ plt.figure(figsize=(15, 10))
91
+ plt.title("Image with Segmentation")
92
+ st.pyplot(plt.gcf())