Spaces:
Running
Running
| import ast | |
| import copy | |
| import html | |
| import random | |
| import re | |
| import time | |
| import traceback | |
| import numpy as np | |
| import torch | |
| import transformers | |
| from transformers import LogitsProcessorList, is_torch_xpu_available | |
| import modules.shared as shared | |
| from modules.callbacks import ( | |
| Iteratorize, | |
| Stream, | |
| _StopEverythingStoppingCriteria | |
| ) | |
| from modules.extensions import apply_extensions | |
| from modules.grammar import GrammarLogitsProcessor | |
| from modules.html_generator import generate_4chan_html, generate_basic_html | |
| from modules.logging_colors import logger | |
| from modules.models import clear_torch_cache, local_rank | |
| def generate_reply(*args, **kwargs): | |
| shared.generation_lock.acquire() | |
| try: | |
| for result in _generate_reply(*args, **kwargs): | |
| yield result | |
| finally: | |
| shared.generation_lock.release() | |
| def _generate_reply(question, state, stopping_strings=None, is_chat=False, escape_html=False, for_ui=False): | |
| # Find the appropriate generation function | |
| generate_func = apply_extensions('custom_generate_reply') | |
| if generate_func is None: | |
| if shared.model_name == 'None' or shared.model is None: | |
| logger.error("No model is loaded! Select one in the Model tab.") | |
| yield '' | |
| return | |
| if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel']: | |
| generate_func = generate_reply_custom | |
| else: | |
| generate_func = generate_reply_HF | |
| # Prepare the input | |
| original_question = question | |
| if not is_chat: | |
| state = apply_extensions('state', state) | |
| question = apply_extensions('input', question, state) | |
| # Find the stopping strings | |
| all_stop_strings = [] | |
| for st in (stopping_strings, state['custom_stopping_strings']): | |
| if type(st) is str: | |
| st = ast.literal_eval(f"[{st}]") | |
| if type(st) is list and len(st) > 0: | |
| all_stop_strings += st | |
| if shared.args.verbose: | |
| print(f'\n\n{question}\n--------------------\n') | |
| shared.stop_everything = False | |
| clear_torch_cache() | |
| seed = set_manual_seed(state['seed']) | |
| last_update = -1 | |
| reply = '' | |
| is_stream = state['stream'] | |
| if len(all_stop_strings) > 0 and not state['stream']: | |
| state = copy.deepcopy(state) | |
| state['stream'] = True | |
| # Generate | |
| for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat): | |
| reply, stop_found = apply_stopping_strings(reply, all_stop_strings) | |
| if escape_html: | |
| reply = html.escape(reply) | |
| if is_stream: | |
| cur_time = time.time() | |
| # Maximum number of tokens/second | |
| if state['max_tokens_second'] > 0: | |
| diff = 1 / state['max_tokens_second'] - (cur_time - last_update) | |
| if diff > 0: | |
| time.sleep(diff) | |
| last_update = time.time() | |
| yield reply | |
| # Limit updates to 24 or 5 per second to avoid lag in the Gradio UI | |
| # API updates are not limited | |
| else: | |
| min_update_interval = 0 if not for_ui else 0.2 if (shared.args.listen or shared.args.share) else 0.0417 | |
| if cur_time - last_update > min_update_interval: | |
| last_update = cur_time | |
| yield reply | |
| if stop_found or (state['max_tokens_second'] > 0 and shared.stop_everything): | |
| break | |
| if not is_chat: | |
| reply = apply_extensions('output', reply, state) | |
| yield reply | |
| def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): | |
| if shared.tokenizer is None: | |
| raise ValueError('No tokenizer is loaded') | |
| if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel', 'Exllamav2Model']: | |
| input_ids = shared.tokenizer.encode(str(prompt)) | |
| if shared.model.__class__.__name__ not in ['Exllamav2Model']: | |
| input_ids = np.array(input_ids).reshape(1, len(input_ids)) | |
| else: | |
| input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) | |
| if not add_bos_token: | |
| while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id: | |
| input_ids = input_ids[:, 1:] | |
| # Handling truncation | |
| if truncation_length is not None: | |
| input_ids = input_ids[:, -truncation_length:] | |
| if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu: | |
| return input_ids | |
| elif shared.args.deepspeed: | |
| return input_ids.to(device=local_rank) | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device('mps') | |
| return input_ids.to(device) | |
| elif is_torch_xpu_available(): | |
| return input_ids.to("xpu:0") | |
| else: | |
| return input_ids.cuda() | |
| def decode(output_ids, skip_special_tokens=True): | |
| if shared.tokenizer is None: | |
| raise ValueError('No tokenizer is loaded') | |
| return shared.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens) | |
| def get_encoded_length(prompt): | |
| length_after_extensions = apply_extensions('tokenized_length', prompt) | |
| if length_after_extensions is not None: | |
| return length_after_extensions | |
| return len(encode(prompt)[0]) | |
| def get_token_ids(prompt): | |
| tokens = encode(prompt)[0] | |
| decoded_tokens = [shared.tokenizer.decode([i]) for i in tokens] | |
| output = '' | |
| for row in list(zip(tokens, decoded_tokens)): | |
| output += f"{str(int(row[0])).ljust(5)} - {repr(row[1])}\n" | |
| return output | |
| def get_max_prompt_length(state): | |
| return state['truncation_length'] - state['max_new_tokens'] | |
| def generate_reply_wrapper(question, state, stopping_strings=None): | |
| """ | |
| Returns formatted outputs for the UI | |
| """ | |
| reply = question if not shared.is_seq2seq else '' | |
| yield formatted_outputs(reply, shared.model_name) | |
| for reply in generate_reply(question, state, stopping_strings, is_chat=False, escape_html=True, for_ui=True): | |
| if not shared.is_seq2seq: | |
| reply = question + reply | |
| yield formatted_outputs(reply, shared.model_name) | |
| def formatted_outputs(reply, model_name): | |
| if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']): | |
| reply = fix_gpt4chan(reply) | |
| return html.unescape(reply), generate_4chan_html(reply) | |
| else: | |
| return html.unescape(reply), generate_basic_html(reply) | |
| def fix_gpt4chan(s): | |
| """ | |
| Removes empty replies from gpt4chan outputs | |
| """ | |
| for i in range(10): | |
| s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) | |
| s = re.sub("--- [0-9]*\n *\n---", "---", s) | |
| s = re.sub("--- [0-9]*\n\n\n---", "---", s) | |
| return s | |
| def fix_galactica(s): | |
| """ | |
| Fix the LaTeX equations in GALACTICA | |
| """ | |
| s = s.replace(r'\[', r'$') | |
| s = s.replace(r'\]', r'$') | |
| s = s.replace(r'\(', r'$') | |
| s = s.replace(r'\)', r'$') | |
| s = s.replace(r'$$', r'$') | |
| s = re.sub(r'\n', r'\n\n', s) | |
| s = re.sub(r"\n{3,}", "\n\n", s) | |
| return s | |
| def set_manual_seed(seed): | |
| seed = int(seed) | |
| if seed == -1: | |
| seed = random.randint(1, 2**31) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(seed) | |
| elif is_torch_xpu_available(): | |
| torch.xpu.manual_seed_all(seed) | |
| return seed | |
| def stop_everything_event(): | |
| shared.stop_everything = True | |
| def apply_stopping_strings(reply, all_stop_strings): | |
| stop_found = False | |
| for string in all_stop_strings: | |
| idx = reply.find(string) | |
| if idx != -1: | |
| reply = reply[:idx] | |
| stop_found = True | |
| break | |
| if not stop_found: | |
| # If something like "\nYo" is generated just before "\nYou:" | |
| # is completed, trim it | |
| for string in all_stop_strings: | |
| for j in range(len(string) - 1, 0, -1): | |
| if reply[-j:] == string[:j]: | |
| reply = reply[:-j] | |
| break | |
| else: | |
| continue | |
| break | |
| return reply, stop_found | |
| def get_reply_from_output_ids(output_ids, state, starting_from=0): | |
| reply = decode(output_ids[starting_from:], state['skip_special_tokens']) | |
| if hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from and shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from])).startswith('▁'): | |
| reply = ' ' + reply | |
| return reply | |
| def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): | |
| generate_params = {} | |
| for k in ['max_new_tokens', 'do_sample', 'temperature', 'temperature_last', 'top_p', 'min_p', 'typical_p', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'guidance_scale']: | |
| generate_params[k] = state[k] | |
| if state['negative_prompt'] != '': | |
| generate_params['negative_prompt_ids'] = encode(state['negative_prompt']) | |
| for k in ['epsilon_cutoff', 'eta_cutoff']: | |
| if state[k] > 0: | |
| generate_params[k] = state[k] * 1e-4 | |
| if state['ban_eos_token']: | |
| generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id] | |
| if state['custom_token_bans']: | |
| to_ban = [int(x) for x in state['custom_token_bans'].split(',')] | |
| if len(to_ban) > 0: | |
| if generate_params.get('suppress_tokens', None): | |
| generate_params['suppress_tokens'] += to_ban | |
| else: | |
| generate_params['suppress_tokens'] = to_ban | |
| generate_params.update({'use_cache': not shared.args.no_cache}) | |
| if shared.args.deepspeed: | |
| generate_params.update({'synced_gpus': True}) | |
| # Encode the input | |
| input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) | |
| output = input_ids[0] | |
| cuda = not any((shared.args.cpu, shared.args.deepspeed)) | |
| if state['auto_max_new_tokens']: | |
| generate_params['max_new_tokens'] = state['truncation_length'] - input_ids.shape[-1] | |
| # Add the encoded tokens to generate_params | |
| question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) | |
| original_input_ids = input_ids | |
| generate_params.update({'inputs': input_ids}) | |
| if inputs_embeds is not None: | |
| generate_params.update({'inputs_embeds': inputs_embeds}) | |
| # Stopping criteria / eos token | |
| eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] | |
| generate_params['eos_token_id'] = eos_token_ids | |
| generate_params['stopping_criteria'] = transformers.StoppingCriteriaList() | |
| generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria()) | |
| processor = state.get('logits_processor', LogitsProcessorList([])) | |
| # In case a processor is passed by itself. | |
| if not isinstance(processor, LogitsProcessorList): | |
| processor = LogitsProcessorList([processor]) | |
| processor.append(GrammarLogitsProcessor(state['grammar_string'])) | |
| apply_extensions('logits_processor', processor, input_ids) | |
| generate_params['logits_processor'] = processor | |
| t0 = time.time() | |
| try: | |
| if not is_chat and not shared.is_seq2seq: | |
| yield '' | |
| # Generate the entire reply at once. | |
| if not state['stream']: | |
| with torch.no_grad(): | |
| output = shared.model.generate(**generate_params)[0] | |
| if cuda: | |
| output = output.cuda() | |
| starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) | |
| yield get_reply_from_output_ids(output, state, starting_from=starting_from) | |
| # Stream the reply 1 token at a time. | |
| # This is based on the trick of using 'stopping_criteria' to create an iterator. | |
| else: | |
| def generate_with_callback(callback=None, *args, **kwargs): | |
| kwargs['stopping_criteria'].append(Stream(callback_func=callback)) | |
| clear_torch_cache() | |
| with torch.no_grad(): | |
| shared.model.generate(**kwargs) | |
| def generate_with_streaming(**kwargs): | |
| return Iteratorize(generate_with_callback, [], kwargs, callback=None) | |
| with generate_with_streaming(**generate_params) as generator: | |
| cumulative_reply = '' | |
| starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) | |
| for output in generator: | |
| if output[-1] in eos_token_ids: | |
| break | |
| new_content = get_reply_from_output_ids(output, state, starting_from=starting_from) | |
| # check the partial unicode character | |
| if chr(0xfffd) in new_content: | |
| continue | |
| cumulative_reply += new_content | |
| starting_from = len(output) | |
| yield cumulative_reply | |
| except Exception: | |
| traceback.print_exc() | |
| finally: | |
| t1 = time.time() | |
| original_tokens = len(original_input_ids[0]) | |
| new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) | |
| print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') | |
| return | |
| def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False): | |
| """ | |
| For models that do not use the transformers library for sampling | |
| """ | |
| seed = set_manual_seed(state['seed']) | |
| t0 = time.time() | |
| reply = '' | |
| try: | |
| if not is_chat: | |
| yield '' | |
| if not state['stream']: | |
| reply = shared.model.generate(question, state) | |
| yield reply | |
| else: | |
| for reply in shared.model.generate_with_streaming(question, state): | |
| yield reply | |
| except Exception: | |
| traceback.print_exc() | |
| finally: | |
| t1 = time.time() | |
| original_tokens = len(encode(original_question)[0]) | |
| new_tokens = len(encode(original_question + reply)[0]) - original_tokens | |
| print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') | |
| return | |