Spaces:
Sleeping
Sleeping
Add initial Dockerfile, FastAPI application, and requirements
Browse files- Dockerfile +16 -0
- app.py +141 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, Form, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.naive_bayes import CategoricalNB
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.metrics import confusion_matrix
|
10 |
+
import json
|
11 |
+
import io
|
12 |
+
from typing import Dict, List, Optional
|
13 |
+
from pydantic import BaseModel
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
app.add_middleware(
|
18 |
+
CORSMiddleware,
|
19 |
+
allow_origins=["*"],
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"],
|
22 |
+
allow_headers=["*"],
|
23 |
+
)
|
24 |
+
|
25 |
+
model = None
|
26 |
+
feature_encoders: Dict[str, LabelEncoder] = {}
|
27 |
+
target_encoder: Optional[LabelEncoder] = None
|
28 |
+
|
29 |
+
class TrainOptions(BaseModel):
|
30 |
+
target_column: str
|
31 |
+
feature_columns: List[str]
|
32 |
+
|
33 |
+
class PredictionFeatures(BaseModel):
|
34 |
+
features: Dict[str, str]
|
35 |
+
|
36 |
+
@app.get("/api/health")
|
37 |
+
async def health_check():
|
38 |
+
return {"status": "healthy"}
|
39 |
+
|
40 |
+
@app.post("/api/upload")
|
41 |
+
async def upload_csv(file: UploadFile):
|
42 |
+
if not file.filename.endswith('.csv'):
|
43 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
44 |
+
|
45 |
+
try:
|
46 |
+
contents = await file.read()
|
47 |
+
df = pd.read_csv(io.StringIO(contents.decode()))
|
48 |
+
|
49 |
+
columns = df.columns.tolist()
|
50 |
+
column_types = {col: str(df[col].dtype) for col in columns}
|
51 |
+
|
52 |
+
unique_values = {col: df[col].unique().tolist() for col in columns}
|
53 |
+
|
54 |
+
for col, values in unique_values.items():
|
55 |
+
unique_values[col] = [v.item() if isinstance(v, np.generic) else v for v in values]
|
56 |
+
|
57 |
+
return {
|
58 |
+
"message": "File uploaded successfully",
|
59 |
+
"columns": columns,
|
60 |
+
"column_types": column_types,
|
61 |
+
"unique_values": unique_values,
|
62 |
+
"row_count": len(df)
|
63 |
+
}
|
64 |
+
except Exception as e:
|
65 |
+
raise HTTPException(status_code=500, detail=str(e))
|
66 |
+
|
67 |
+
@app.post("/api/train")
|
68 |
+
async def train_model(file: UploadFile, options: str = Form(...)):
|
69 |
+
global model, feature_encoders, target_encoder
|
70 |
+
|
71 |
+
try:
|
72 |
+
train_options = json.loads(options)
|
73 |
+
target_column = train_options["target_column"]
|
74 |
+
feature_columns = train_options["feature_columns"]
|
75 |
+
|
76 |
+
contents = await file.read()
|
77 |
+
df = pd.read_csv(io.StringIO(contents.decode()))
|
78 |
+
|
79 |
+
X = pd.DataFrame()
|
80 |
+
feature_encoders = {}
|
81 |
+
for column in feature_columns:
|
82 |
+
encoder = LabelEncoder()
|
83 |
+
X[column] = encoder.fit_transform(df[column])
|
84 |
+
feature_encoders[column] = encoder
|
85 |
+
|
86 |
+
target_encoder = LabelEncoder()
|
87 |
+
y = target_encoder.fit_transform(df[target_column])
|
88 |
+
|
89 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
90 |
+
X, y, test_size=0.2, random_state=42
|
91 |
+
)
|
92 |
+
|
93 |
+
model = CategoricalNB()
|
94 |
+
model.fit(X_train, y_train)
|
95 |
+
|
96 |
+
accuracy = float(model.score(X_test, y_test))
|
97 |
+
|
98 |
+
return {
|
99 |
+
"message": "Model trained successfully",
|
100 |
+
"accuracy": accuracy,
|
101 |
+
"target_classes": target_encoder.classes_.tolist()
|
102 |
+
}
|
103 |
+
|
104 |
+
except Exception as e:
|
105 |
+
raise HTTPException(status_code=500, detail=str(e))
|
106 |
+
|
107 |
+
@app.post("/api/predict")
|
108 |
+
async def predict(features: PredictionFeatures):
|
109 |
+
global model, feature_encoders, target_encoder
|
110 |
+
|
111 |
+
if model is None:
|
112 |
+
raise HTTPException(status_code=400, detail="Model not trained yet")
|
113 |
+
|
114 |
+
try:
|
115 |
+
encoded_features = {}
|
116 |
+
for column, value in features.features.items():
|
117 |
+
if column in feature_encoders:
|
118 |
+
encoded_features[column] = feature_encoders[column].transform([value])[0]
|
119 |
+
|
120 |
+
X = pd.DataFrame([encoded_features])
|
121 |
+
|
122 |
+
prediction = model.predict(X)
|
123 |
+
prediction_proba = model.predict_proba(X)
|
124 |
+
|
125 |
+
predicted_class = target_encoder.inverse_transform(prediction)[0]
|
126 |
+
|
127 |
+
class_probabilities = {
|
128 |
+
target_encoder.inverse_transform([i])[0]: float(prob)
|
129 |
+
for i, prob in enumerate(prediction_proba[0])
|
130 |
+
}
|
131 |
+
|
132 |
+
return {
|
133 |
+
"prediction": predicted_class,
|
134 |
+
"probabilities": class_probabilities
|
135 |
+
}
|
136 |
+
except Exception as e:
|
137 |
+
raise HTTPException(status_code=500, detail=str(e))
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
import uvicorn
|
141 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
python-multipart
|
4 |
+
pandas
|
5 |
+
scikit-learn
|
6 |
+
numpy
|
7 |
+
matplotlib
|
8 |
+
gunicorn
|