Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from decord import VideoReader, cpu | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
from fastapi import FastAPI, UploadFile, File | |
from typing import List | |
from io import BytesIO | |
# FastAPI app initialization | |
app = FastAPI() | |
# Device Configuration | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
target_width = image_size * target_ratios[0][0] | |
target_height = image_size * target_ratios[0][1] | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(target_ratios[0][0] * target_ratios[0][1]): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file: BytesIO, input_size=448, max_num=12): | |
image = Image.open(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values).to(device) | |
return pixel_values | |
# Load Model | |
path = 'OpenGVLab/InternVL2_5-1B' | |
model = AutoModel.from_pretrained( | |
path, | |
low_cpu_mem_usage=True, | |
use_flash_attn=False, | |
trust_remote_code=True | |
).eval().to(device) | |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) | |
async def predict(file: UploadFile = File(...), question: str = "Describe the image"): | |
# Load and preprocess the image | |
file_bytes = BytesIO(await file.read()) | |
pixel_values = load_image(file_bytes) | |
# Generate a response | |
generation_config = dict(max_new_tokens=1024, do_sample=True) | |
response, _ = model.chat(tokenizer, pixel_values, question, generation_config) | |
return {"question": question, "response": response} | |