Spaces:
Sleeping
Sleeping
File size: 3,760 Bytes
98985f3 bbc0512 f3369dd a17b6c0 72a73bd a17b6c0 6475fdc a17b6c0 6475fdc 765b56a 6475fdc fcd2041 a17b6c0 8db2f29 e3dfd55 6475fdc 765b56a e3dfd55 6475fdc 93d9f1b a17b6c0 98985f3 2789d18 6475fdc d22f2ea 765b56a 6475fdc fcd2041 8435721 fcd2041 6475fdc fcd2041 6475fdc e363f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
from transformers import AutoTokenizer
import gradio as gr
def tokenize(input_text):
llama_tokens = len(
llama_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
llama3_tokens = len(
llama3_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
mistral_tokens = len(
mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
gpt2_tokens = len(
gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
gpt_neox_tokens = len(
gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
falcon_tokens = len(
falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
phi2_tokens = len(
phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
phi3_tokens = len(
phi3_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
t5_tokens = len(
t5_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
gemma_tokens = len(
gemma_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
command_r_tokens = len(
command_r_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
qwen_tokens = len(
qwen_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
codeqwen_tokens = len(
codeqwen_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
rwkv_tokens = len(
rwkv_tokenizer(input_text, add_special_tokens=True)["input_ids"]
)
results = {
"LLaMa-1/LLaMa-2": llama_tokens,
"LLaMa-3": llama3_tokens,
"Mistral": mistral_tokens,
"GPT-2/GPT-J": gpt2_tokens,
"GPT-NeoX": gpt_neox_tokens,
"Falcon": falcon_tokens,
"Phi-1/Phi-2": phi2_tokens,
"Phi-3": phi3_tokens,
"T5": t5_tokens,
"Gemma": gemma_tokens,
"Command-R": command_r_tokens,
"Qwen/Qwen1.5": qwen_tokens,
"CodeQwen": codeqwen_tokens,
"v5-RWKV": rwkv_tokens
}
# Sort the results in descending order based on token length
sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)
return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results])
if __name__ == "__main__":
llama_tokenizer = AutoTokenizer.from_pretrained(
"TheBloke/Llama-2-7B-fp16"
)
llama3_tokenizer = AutoTokenizer.from_pretrained(
"unsloth/llama-3-8b"
)
mistral_tokenizer = AutoTokenizer.from_pretrained(
"mistral-community/Mistral-7B-v0.2"
)
gpt2_tokenizer = AutoTokenizer.from_pretrained(
"gpt2"
)
gpt_neox_tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/gpt-neox-20b"
)
falcon_tokenizer = AutoTokenizer.from_pretrained(
"tiiuae/falcon-7b"
)
phi2_tokenizer = AutoTokenizer.from_pretrained(
"microsoft/phi-2"
)
phi3_tokenizer = AutoTokenizer.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct"
)
t5_tokenizer = AutoTokenizer.from_pretrained(
"google/flan-t5-xxl"
)
gemma_tokenizer = AutoTokenizer.from_pretrained(
"alpindale/gemma-2b"
)
command_r_tokenizer = AutoTokenizer.from_pretrained(
"CohereForAI/c4ai-command-r-plus"
)
qwen_tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen1.5-7B"
)
codeqwen_tokenizer = AutoTokenizer.from_pretrained(
"Qwen/CodeQwen1.5-7B"
)
rwkv_tokenizer = AutoTokenizer.from_pretrained(
"RWKV/v5-EagleX-v2-7B-HF",
trust_remote_code=True
)
iface = gr.Interface(
fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=14), outputs="text"
)
iface.launch()
|