yahyaahmed commited on
Commit
38c68ac
·
verified ·
1 Parent(s): a5d4f49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -10
app.py CHANGED
@@ -5,8 +5,6 @@ from supervision import Detections
5
  from PIL import Image
6
  import numpy as np
7
  import cv2
8
- import base64
9
- import io
10
 
11
  # Download and load the model
12
  model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
@@ -31,12 +29,7 @@ def detect_faces(image):
31
  # Convert back to PIL image
32
  result_image = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
33
 
34
- # Convert to base64 for API use
35
- buffered = io.BytesIO()
36
- result_image.save(buffered, format="PNG")
37
- img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
38
-
39
- return result_image, num_faces, img_str
40
 
41
  # Gradio Interface
42
  demo = gr.Interface(
@@ -44,8 +37,7 @@ demo = gr.Interface(
44
  inputs=gr.Image(type="pil", label="Upload Image"),
45
  outputs=[
46
  gr.Image(type="pil", label="Detected Faces"),
47
- gr.Number(label="Face Count"),
48
- gr.Textbox(label="Base64 Encoded Image")
49
  ],
50
  title="Face Detection with YOLOv8",
51
  description="Drag and drop an image or click to upload. The model will detect faces using YOLOv8.",
 
5
  from PIL import Image
6
  import numpy as np
7
  import cv2
 
 
8
 
9
  # Download and load the model
10
  model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
 
29
  # Convert back to PIL image
30
  result_image = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
31
 
32
+ return result_image, num_faces
 
 
 
 
 
33
 
34
  # Gradio Interface
35
  demo = gr.Interface(
 
37
  inputs=gr.Image(type="pil", label="Upload Image"),
38
  outputs=[
39
  gr.Image(type="pil", label="Detected Faces"),
40
+ gr.Number(label="Face Count")
 
41
  ],
42
  title="Face Detection with YOLOv8",
43
  description="Drag and drop an image or click to upload. The model will detect faces using YOLOv8.",