Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,42 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from supervision import Detections
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
|
9 |
+
# Download and load the model
|
10 |
+
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
|
11 |
+
model = YOLO(model_path)
|
12 |
|
13 |
+
# Define prediction function
|
14 |
+
def detect_faces(image):
|
15 |
+
# Run inference
|
16 |
+
output = model(image)
|
17 |
+
detections = Detections.from_ultralytics(output[0])
|
18 |
+
|
19 |
+
# Convert PIL image to OpenCV format
|
20 |
+
image_np = np.array(image)
|
21 |
+
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
22 |
+
|
23 |
+
# Draw bounding boxes
|
24 |
+
for box in detections.xyxy:
|
25 |
+
x1, y1, x2, y2 = map(int, box)
|
26 |
+
cv2.rectangle(image_cv, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
27 |
+
|
28 |
+
# Convert back to PIL image
|
29 |
+
result_image = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
|
30 |
+
return result_image
|
31 |
+
|
32 |
+
# Gradio Interface
|
33 |
+
demo = gr.Interface(
|
34 |
+
fn=detect_faces,
|
35 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
36 |
+
outputs=gr.Image(type="pil", label="Detected Faces"),
|
37 |
+
title="Face Detection with YOLOv8",
|
38 |
+
description="Drag and drop an image or click to upload. The model will detect faces using YOLOv8.",
|
39 |
+
live=False
|
40 |
+
)
|
41 |
|
42 |
demo.launch()
|