File size: 4,758 Bytes
4d35d05
857e937
170c5f1
eaf3f9a
170c5f1
bad46c5
dbb92e9
170c5f1
1ab421e
bad46c5
eaf3f9a
eaf6f50
 
 
1ab421e
 
7af38c7
1ab421e
 
 
 
170c5f1
 
 
 
 
3476a0f
170c5f1
 
 
7ce0c46
 
 
 
 
bad46c5
7af38c7
170c5f1
eb971e4
170c5f1
7af38c7
 
 
 
3476a0f
 
 
 
 
bad46c5
 
170c5f1
 
 
 
bad46c5
 
170c5f1
 
 
bad46c5
 
857e937
 
 
 
 
 
 
 
 
eaf3f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bad46c5
 
eaf3f9a
3476a0f
eaf3f9a
bad46c5
7af38c7
d7821a8
7af38c7
 
 
 
d7821a8
eaf3f9a
 
 
 
 
01c0141
31d4200
 
 
3476a0f
31d4200
 
 
 
eaf3f9a
65871c9
eaf3f9a
 
 
 
 
 
 
31d4200
 
 
 
 
 
 
 
 
7af38c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
    raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")

tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)

prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
"""

tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)

def preprocess_user_prompt(user_prompt):
    generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
    return generated_text

def format_prompt(description, columns):
    processed_description = preprocess_user_prompt(description)
    prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
    return prompt

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"

generation_params = {
    "top_p": 0.90,
    "temperature": 0.8,
    "max_new_tokens": 512,
    "return_full_text": False,
    "use_cache": False
}

def generate_synthetic_data(description, columns):
    formatted_prompt = format_prompt(description, columns)
    payload = {"inputs": formatted_prompt, "parameters": generation_params}
    try:
        response = requests.post(API_URL, headers={"Authorization": f"Bearer {hf_token}"}, json=payload)
        response.raise_for_status()
        data = response.json()
        if 'generated_text' in data[0]:
            return data[0]['generated_text']
        else:
            raise ValueError("Invalid response format from Hugging Face API.")
    except (requests.RequestException, ValueError) as e:
        print(f"Error during API request or response processing: {e}")
        return ""

def process_generated_data(csv_data, expected_columns):
    try:
        cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
        data = StringIO(cleaned_data)
        df = pd.read_csv(data, delimiter=',')
        
        if set(df.columns) != set(expected_columns):
            print(f"Unexpected columns in the generated data: {df.columns}")
            return None
        
        return df
    except pd.errors.ParserError as e:
        print(f"Failed to parse CSV data: {e}")
        return None

def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
    data_frames = []
    
    for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
        generated_data = generate_synthetic_data(description, columns)
        df_synthetic = process_generated_data(generated_data, columns)
        
        if df_synthetic is not None and not df_synthetic.empty:
            data_frames.append(df_synthetic)
        else:
            print("Skipping invalid generation.")
       
    if data_frames:
        return pd.concat(data_frames, ignore_index=True)
    else:
        print("No valid data frames to concatenate.")
        return pd.DataFrame(columns=columns)

class DataGenerationRequest(BaseModel):
    description: str
    columns: list[str]

@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
    description = request.description.strip()
    columns = [col.strip() for col in request.columns]
    csv_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100)
    
    if csv_data.empty:
        return JSONResponse(content={"error": "No valid data generated"}, status_code=500)
    
    csv_buffer = StringIO()
    csv_data.to_csv(csv_buffer, index=False)
    csv_buffer.seek(0)

    return StreamingResponse(
        csv_buffer,
        media_type="text/csv",
        headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
    )

@app.get("/")
def greet_json():
    return {"Hello": "World!"}