File size: 5,416 Bytes
170c5f1
a93106f
170c5f1
 
 
bad46c5
dbb92e9
170c5f1
1ab421e
bad46c5
 
eaf6f50
 
 
1ab421e
 
7ce0c46
1ab421e
 
 
 
170c5f1
 
 
 
 
 
 
bad46c5
170c5f1
 
 
 
 
 
bad46c5
 
 
 
170c5f1
bad46c5
7ce0c46
 
 
 
 
bad46c5
7ce0c46
 
 
 
 
 
 
 
 
 
 
 
 
170c5f1
 
 
 
 
bad46c5
 
 
 
 
170c5f1
 
 
 
 
 
bad46c5
 
170c5f1
 
 
 
bad46c5
 
170c5f1
 
 
bad46c5
 
 
 
 
 
 
 
 
 
 
170c5f1
20981ee
 
 
bad46c5
20981ee
bad46c5
170c5f1
20981ee
bad46c5
 
 
 
 
 
 
 
a93106f
021bce4
20981ee
bad46c5
 
20981ee
bad46c5
 
 
a93106f
bad46c5
20981ee
bad46c5
a93106f
 
bad46c5
 
170c5f1
 
 
 
 
bad46c5
170c5f1
bad46c5
170c5f1
 
20981ee
a93106f
 
 
 
 
 
170c5f1
 
 
13454c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can specify domains here
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')

if not hf_token:
    raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")

# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')

# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)

def preprocess_user_prompt(user_prompt):
    # Generate a structured prompt based on the user input
    generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
    return generated_text

# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """

class DataGenerationRequest(BaseModel):
    description: str
    columns: list

# Set up the Mixtral model and tokenizer
token = hf_token  # Use environment variable for the token
HfFolder.save_token(token)

tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)

def format_prompt(description, columns):
    processed_description = preprocess_user_prompt(description)
    prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
    return prompt

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"

generation_params = {
    "top_p": 0.90,
    "temperature": 0.8,
    "max_new_tokens": 512,
    "return_full_text": False,
    "use_cache": False
}

def generate_synthetic_data(description, columns):
    formatted_prompt = format_prompt(description, columns)
    payload = {"inputs": formatted_prompt, "parameters": generation_params}
    response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload)
    response_data = response.json()
    
    if 'error' in response_data:
        return f"Error: {response_data['error']}"
    
    return response_data[0]["generated_text"]

def process_generated_data(csv_data, expected_columns):
    try:
        # Ensure the data is cleaned and correctly formatted
        cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
        data = StringIO(cleaned_data)
        
        # Read the CSV data
        df = pd.read_csv(data, delimiter=',')
        
        # Check if the DataFrame has the expected columns
        if set(df.columns) != set(expected_columns):
            return f"Unexpected columns in the generated data: {df.columns}"
        
        return df
    except pd.errors.ParserError as e:
        return f"Failed to parse CSV data: {e}"

def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
    csv_data_all = ""
    
    for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
        generated_data = generate_synthetic_data(description, columns)
        if "Error" in generated_data:
            return generated_data  # Return the error message

        df_synthetic = process_generated_data(generated_data, columns)
        if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty:
            csv_data_all += df_synthetic.to_csv(index=False, header=False)
        else:
            print("Skipping invalid generation.")

    if csv_data_all:
        return csv_data_all
    else:
        return "No valid data frames to concatenate."

@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
    description = request.description.strip()
    columns = [col.strip() for col in request.columns]
    generated_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100)
    
    if isinstance(generated_data, str) and "Error" in generated_data:
        return JSONResponse(content={"error": generated_data}, status_code=500)
    
    # Create a streaming response to return the CSV data
    csv_buffer = StringIO(generated_data)
    return StreamingResponse(
        csv_buffer,
        media_type="text/csv",
        headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
    )

@app.get("/")
def greet_json():
    return {"Hello": "World!"}