File size: 5,054 Bytes
170c5f1
 
 
 
 
 
 
 
 
 
 
1ab421e
fa1c843
eaf6f50
 
 
 
1ab421e
 
 
 
 
 
 
170c5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021bce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170c5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
021bce4
170c5f1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForCausalLM, pipeline
from io import StringIO
from tqdm import tqdm
import accelerate
from accelerate import init_empty_weights, disk_offload
from fastapi.middleware.cors import CORSMiddleware
import re


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can specify domains here
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')

if not hf_token:
    raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")

# Load the GPT-2 tokenizer and model
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')

# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)

# Load the Llama-3 model and tokenizer once during startup
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B", token=hf_token)
model_llama = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Meta-Llama-3.1-8B",
    torch_dtype='auto',
    device_map='auto',
    token=hf_token
)

# Define your prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format with a minimum of 100 rows per generation.
Ensure that the data is realistic, does not contain any duplicate rows, and follows any specific conditions mentioned.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """

class DataGenerationRequest(BaseModel):
    description: str
    columns: list

def preprocess_user_prompt(user_prompt):
    generated_text = text_generator(user_prompt, max_length=60, num_return_sequences=1, truncation=True)[0]["generated_text"]
    return generated_text

def format_prompt(description, columns):
    processed_description = preprocess_user_prompt(description)
    prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
    return prompt

generation_params = {
    "top_p": 0.90,
    "temperature": 0.8,
    "max_new_tokens": 512,
}

def generate_synthetic_data(description, columns):
    try:
        # Prepare the input for the Llama model
        formatted_prompt = format_prompt(description, columns)

        # Tokenize the prompt with truncation enabled
        inputs = tokenizer_llama(formatted_prompt, return_tensors="pt", truncation=True, max_length=512).to(model_llama.device)

        # Generate synthetic data
        with torch.no_grad():
            outputs = model_llama.generate(
                **inputs,
                max_length=512,
                top_p=generation_params["top_p"],
                temperature=generation_params["temperature"],
                num_return_sequences=1,
            )

        # Decode the generated output
        generated_text = tokenizer_llama.decode(outputs[0], skip_special_tokens=True)
        
        # Return the generated synthetic data
        return generated_text
    except Exception as e:
        return f"Error: {e}"
        
def clean_generated_text(generated_text):
    # Extract CSV part using a regular expression
    csv_match = re.search(r'(\n?([A-Za-z0-9_]+,)*[A-Za-z0-9_]+\n([^\n,]*,)*[^\n,]*\n*)+', generated_text)
    
    if csv_match:
        csv_text = csv_match.group(0)
    else:
        raise ValueError("No valid CSV data found in generated text.")
    
    return csv_text

def process_generated_data(csv_data):
    # Clean the generated data
    cleaned_data = clean_generated_text(csv_data)
    
    # Convert to DataFrame
    data = StringIO(cleaned_data)
    df = pd.read_csv(data)
    
    return df

@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
    description = request.description.strip()
    columns = [col.strip() for col in request.columns]
    generated_data = generate_synthetic_data(description, columns)
    
    if "Error" in generated_data:
        return JSONResponse(content={"error": generated_data}, status_code=500)
    
    # Process the generated CSV data into a DataFrame
    df_synthetic = process_generated_data(generated_data)
    return JSONResponse(content={"data": df_synthetic.to_dict(orient="records")})



@app.get("/")
def greet_json():
    return {"Hello": "World!"}