from fastapi import FastAPI from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel import pandas as pd import os import requests from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer from io import StringIO from fastapi.middleware.cors import CORSMiddleware from huggingface_hub import HfFolder from tqdm import tqdm app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # You can specify domains here allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Access the Hugging Face API token from environment variables hf_token = os.getenv('HF_API_TOKEN') if not hf_token: raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.") # Load GPT-2 model and tokenizer tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2') model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2') # Create a pipeline for text generation using GPT-2 text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2) def preprocess_user_prompt(user_prompt): # Generate a structured prompt based on the user input generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"] return generated_text # Define prompt template prompt_template = """\ You are an expert in generating synthetic data for machine learning models. Your task is to generate a synthetic tabular dataset based on the description provided below. Description: {description} The dataset should include the following columns: {columns} Please provide the data in CSV format. Example Description: Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price' Example Output: Size,Location,Number of Bedrooms,Price 1200,Suburban,3,250000 900,Urban,2,200000 1500,Rural,4,300000 ... Description: {description} Columns: {columns} Output: """ class DataGenerationRequest(BaseModel): description: str columns: list # Set up the Mixtral model and tokenizer token = hf_token # Use environment variable for the token HfFolder.save_token(token) tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token) def format_prompt(description, columns): processed_description = preprocess_user_prompt(description) prompt = prompt_template.format(description=processed_description, columns=",".join(columns)) return prompt API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" generation_params = { "top_p": 0.90, "temperature": 0.8, "max_new_tokens": 512, "return_full_text": False, "use_cache": False } def generate_synthetic_data(description, columns): formatted_prompt = format_prompt(description, columns) payload = {"inputs": formatted_prompt, "parameters": generation_params} response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload) response_data = response.json() if 'error' in response_data: return f"Error: {response_data['error']}" return response_data[0]["generated_text"] def process_generated_data(csv_data, expected_columns): try: # Ensure the data is cleaned and correctly formatted cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n') data = StringIO(cleaned_data) # Read the CSV data df = pd.read_csv(data, delimiter=',') # Check if the DataFrame has the expected columns if set(df.columns) != set(expected_columns): return f"Unexpected columns in the generated data: {df.columns}" return df except pd.errors.ParserError as e: return f"Failed to parse CSV data: {e}" def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100): csv_data_all = "" for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"): generated_data = generate_synthetic_data(description, columns) if "Error" in generated_data: return generated_data # Return the error message df_synthetic = process_generated_data(generated_data, columns) if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty: csv_data_all += df_synthetic.to_csv(index=False, header=False) else: print("Skipping invalid generation.") if csv_data_all: return csv_data_all else: return "No valid data frames to concatenate." @app.post("/generate/") def generate_data(request: DataGenerationRequest): description = request.description.strip() columns = [col.strip() for col in request.columns] generated_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100) if isinstance(generated_data, str) and "Error" in generated_data: return JSONResponse(content={"error": generated_data}, status_code=500) # Create a streaming response to return the CSV data csv_buffer = StringIO(generated_data) return StreamingResponse( csv_buffer, media_type="text/csv", headers={"Content-Disposition": "attachment; filename=generated_data.csv"} ) @app.get("/") def greet_json(): return {"Hello": "World!"}