from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel import pandas as pd import os import requests from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline from io import StringIO from fastapi.middleware.cors import CORSMiddleware from huggingface_hub import HfFolder from tqdm import tqdm app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) hf_token = os.getenv('HF_API_TOKEN') if not hf_token: raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.") # Load GPT-2 model and tokenizer tokenizer_gpt2 = AutoTokenizer.from_pretrained('gpt2') model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2') # Create a pipeline for text generation using GPT-2 text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2) # Define prompt template for generating the dataset prompt_template = """\ You are an AI specialized in generating synthetic tabular data specifically for machine learning purposes. Task: Generate a synthetic dataset based on the provided description and column names. Description: {description} Columns: {columns} Instructions: Output only the tabular data in valid CSV format. Include the header row followed by the data rows. Do not generate any additional text, explanations, comments, or code. Ensure that the values for each column are contextually appropriate. Format Example (do not include this line or the following example in your output): Column1,Column2,Column3 Value1,Value2,Value3 Value4,Value5,Value6 """ # Define generation parameters generation_params = { "top_p": 0.90, "temperature": 0.8, "max_new_tokens": 1024, "return_full_text": False, "use_cache": False } def format_prompt(description, columns): prompt = prompt_template.format(description=description, columns=",".join(columns)) return prompt def generate_synthetic_data(description, columns): formatted_prompt = format_prompt(description, columns) payload = {"inputs": formatted_prompt, "parameters": generation_params} # Call Mixtral model to generate data response = requests.post("https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", headers={"Authorization": f"Bearer {hf_token}"}, json=payload) if response.status_code == 200: return response.json()[0]["generated_text"] else: print(f"Error generating data: {response.status_code}, {response.text}") return None def process_generated_data(csv_data): try: # Ensure the data is cleaned and correctly formatted cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n') data = StringIO(cleaned_data) # Read the CSV data with specific parameters to handle irregularities df = pd.read_csv(data) return df except pd.errors.ParserError as e: print(f"Failed to parse CSV data: {e}") return None def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100): data_frames = [] for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"): generated_data = generate_synthetic_data(description, columns) if generated_data: df_synthetic = process_generated_data(generated_data) if df_synthetic is not None and not df_synthetic.empty: data_frames.append(df_synthetic) else: print("Skipping invalid generation.") if data_frames: return pd.concat(data_frames, ignore_index=True) else: print("No valid data frames to concatenate.") return pd.DataFrame(columns=columns) class DataGenerationRequest(BaseModel): description: str columns: list[str] @app.post("/generate/") def generate_data(request: DataGenerationRequest): description = request.description.strip() columns = [col.strip() for col in request.columns] csv_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100) if csv_data.empty: return JSONResponse(content={"error": "No valid data generated"}, status_code=500) csv_buffer = StringIO() csv_data.to_csv(csv_buffer, index=False) csv_buffer.seek(0) return StreamingResponse( csv_buffer, media_type="text/csv", headers={"Content-Disposition": "attachment; filename=generated_data.csv"} ) @app.get("/") def greet_json(): return {"Hello": "World!"}