yalsaffar commited on
Commit
5466d29
·
1 Parent(s): 8e69b04

Updated Dockerfile for Hugging Face Spaces deployment

Browse files
Files changed (2) hide show
  1. Dockerfile +1 -1
  2. models/nllb.py +7 -0
Dockerfile CHANGED
@@ -47,7 +47,7 @@ ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}
47
  # Set environment variable for NeMo cache directory
48
  ENV NEMO_NLP_TMP=/app/.cache
49
 
50
- # Create cache directory
51
  RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
52
 
53
  # Copy the setup script and requirements file into the container
 
47
  # Set environment variable for NeMo cache directory
48
  ENV NEMO_NLP_TMP=/app/.cache
49
 
50
+ # Create cache directory and set permissions
51
  RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
52
 
53
  # Copy the setup script and requirements file into the container
models/nllb.py CHANGED
@@ -19,8 +19,15 @@ def nllb():
19
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  # Load the tokenizer and model
 
22
  os.environ['HF_HOME'] = '/app/.cache/huggingface'
23
  os.environ['TRANSFORMERS_CACHE'] = '/app/.cache/huggingface'
 
 
 
 
 
 
24
  tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-1.3B")
25
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-1.3B").to(device)
26
  # write done to the file named status.txt
 
19
  #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
  # Load the tokenizer and model
22
+ # Set Hugging Face cache directory
23
  os.environ['HF_HOME'] = '/app/.cache/huggingface'
24
  os.environ['TRANSFORMERS_CACHE'] = '/app/.cache/huggingface'
25
+
26
+ # Create cache directory if it doesn't exist and set permissions
27
+ os.makedirs('/app/.cache/huggingface', exist_ok=True)
28
+ os.chmod('/app/.cache/huggingface', 0o777)
29
+
30
+ # Load models
31
  tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-1.3B")
32
  model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-1.3B").to(device)
33
  # write done to the file named status.txt