ycy commited on
Commit
7dad3b1
·
1 Parent(s): 979e0a3
Files changed (1) hide show
  1. src/populate.py +2 -39
src/populate.py CHANGED
@@ -12,51 +12,14 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
 
15
- # raw_data示例
16
- """raw_data = [
17
- EvalResult(
18
- model_name="org1/model1",
19
- model_dtype="float32",
20
- model_sha="commit_hash1",
21
- results={
22
- "task1": {"metric1": 0.85, "metric2": 0.90},
23
- "task2": {"metric1": 0.75, "metric2": 0.80}
24
- },
25
- model_type="Pretrained",
26
- weight_type="Original",
27
- license="MIT",
28
- likes=100,
29
- params=123456789,
30
- submitted_time="2025-02-28T12:34:56Z",
31
- status="FINISHED",
32
- precision="float32"
33
- ),
34
- EvalResult(
35
- model_name="org2/model2",
36
- model_dtype="float32",
37
- model_sha="commit_hash2",
38
- results={
39
- "task1": {"metric1": 0.88, "metric2": 0.92},
40
- "task2": {"metric1": 0.78, "metric2": 0.82}
41
- },
42
- model_type="Fine-tuned",
43
- weight_type="Adapter",
44
- license="Apache-2.0",
45
- likes=200,
46
- params=987654321,
47
- submitted_time="2025-02-28T12:34:56Z",
48
- status="FINISHED",
49
- precision="float32"
50
- )
51
- ]
52
- """
53
  all_data_json = [v.to_dict() for v in raw_data]
54
 
55
  df = pd.DataFrame.from_records(all_data_json)
56
 
57
  df = df.sort_values(by=[AutoEvalColumn.task0.name], ascending=False)
58
  df = df[cols].round(decimals=2)
59
-
 
60
  # filter out if any of the benchmarks have not been produced
61
  df = df[has_no_nan_values(df, benchmark_cols)]
62
  return df
 
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  all_data_json = [v.to_dict() for v in raw_data]
16
 
17
  df = pd.DataFrame.from_records(all_data_json)
18
 
19
  df = df.sort_values(by=[AutoEvalColumn.task0.name], ascending=False)
20
  df = df[cols].round(decimals=2)
21
+ print(df)
22
+ assert 0
23
  # filter out if any of the benchmarks have not been produced
24
  df = df[has_no_nan_values(df, benchmark_cols)]
25
  return df