File size: 9,210 Bytes
72f90b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
"""
Test script for Model B Dataset B - BERT + Enhanced Dataset

This script tests the BERT based language detection model
trained on the enhanced dataset, achieving the highest accuracy (99.85%).
"""

import sys
import os

# Add the project root to the Python path
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))

from backend.language_detector import LanguageDetector


def test_model_b_dataset_b():
    """Test the Model B Dataset B implementation."""
    print("🧪 Testing Model B Dataset B - BERT + Enhanced Dataset")
    print("=" * 75)
    
    try:
        # Initialize detector with Model B Dataset B (highest accuracy)
        detector = LanguageDetector(model_key="model-b-dataset-b")
        print("✅ Successfully initialized Model B Dataset B")
        
        # Test texts in the 20 supported languages
        test_texts = [
            ("Hello, how are you today?", "en"),  # English
            ("Bonjour, comment allez-vous?", "fr"),  # French
            ("Hola, ¿cómo estás?", "es"),  # Spanish
            ("Guten Tag, wie geht es Ihnen?", "de"),  # German
            ("Ciao, come stai?", "it"),  # Italian
            ("Olá, como você está?", "pt"),  # Portuguese
            ("Привет, как дела?", "ru"),  # Russian
            ("こんにちは、元気ですか?", "ja"),  # Japanese
            ("你好,你好吗?", "zh"),  # Chinese
            ("مرحبا، كيف حالك؟", "ar"),  # Arabic
            ("नमस्ते, आप कैसे हैं?", "hi"),  # Hindi
            ("Hallo, hoe gaat het met je?", "nl"),  # Dutch
            ("Γεια σας, πώς είστε;", "el"),  # Greek
            ("Здравейте, как сте?", "bg"),  # Bulgarian
            ("Witaj, jak się masz?", "pl"),  # Polish
            ("สวัสดี คุณเป็นอย่างไรบ้าง?", "th"),  # Thai
            ("Merhaba, nasılsınız?", "tr"),  # Turkish
            ("آپ کیسے ہیں؟", "ur"),  # Urdu
            ("Xin chào, bạn khỏe không?", "vi"),  # Vietnamese
            ("Habari, unajehje?", "sw")  # Swahili
        ]
        
        print("\n🔍 Running language detection tests on 20 supported languages:")
        print("-" * 75)
        
        correct_predictions = 0
        total_predictions = len(test_texts)
        
        for text, expected_lang in test_texts:
            try:
                result = detector.detect_language(text)
                predicted_lang = result['language_code']
                confidence = result['confidence']
                language_name = result['language']
                
                # Check if prediction is correct
                is_correct = predicted_lang == expected_lang
                if is_correct:
                    correct_predictions += 1
                    status = "✅"
                else:
                    status = "❌"
                
                print(f"{status} Text: {text[:40]}{'...' if len(text) > 40 else ''}")
                print(f"   Expected: {expected_lang} | Predicted: {predicted_lang} ({language_name})")
                print(f"   Confidence: {confidence:.4f}")
                print()
                
            except Exception as e:
                print(f"❌ Error testing '{text[:30]}...': {str(e)}")
                print()
        
        # Calculate accuracy
        accuracy = (correct_predictions / total_predictions) * 100
        print(f"📊 Test Results: {correct_predictions}/{total_predictions} correct")
        print(f"📈 Accuracy: {accuracy:.1f}%")
        
        # Test model info
        print("\n📋 Model Information:")
        print("-" * 75)
        model_info = detector.get_current_model_info()
        for key, value in model_info.items():
            print(f"{key.title().replace('_', ' ')}: {value}")
        
        print("🎉 Model B Dataset B test completed successfully!")
        
    except Exception as e:
        print(f"❌ Test failed: {str(e)}")
        import traceback
        traceback.print_exc()
        return False
    
    return True


def test_all_models_comprehensive():
    """Test and compare all four available model combinations."""
    print("\n🔄 Comprehensive All-Model Combinations Comparison")
    print("=" * 75)
    
    models_to_test = [
        ("model-a-dataset-a", "Model A Dataset A", "XLM-RoBERTa + Standard", "97.9%"),
        ("model-b-dataset-a", "Model B Dataset A", "BERT + Standard", "96.17%"),
        ("model-a-dataset-b", "Model A Dataset B", "XLM-RoBERTa + Enhanced", "99.72%"),
        ("model-b-dataset-b", "Model B Dataset B", "BERT + Enhanced", "99.85%")
    ]
    
    test_texts = [
        "Hello, this is a test in English.",
        "Bonjour, ceci est un test en français.",
        "Hola, esto es una prueba en español.",
        "Guten Tag, das ist ein Test auf Deutsch."
    ]
    
    print("🧪 Testing with multiple sentences across all model combinations:")
    print("-" * 75)
    
    try:
        results_summary = {}
        
        for model_key, model_name, description, claimed_accuracy in models_to_test:
            print(f"\n🤖 Testing {model_name} ({description}) - Claimed: {claimed_accuracy}")
            print("-" * 60)
            
            try:
                detector = LanguageDetector(model_key=model_key)
                model_results = []
                
                for text in test_texts:
                    result = detector.detect_language(text)
                    model_results.append({
                        'text': text[:30] + '...' if len(text) > 30 else text,
                        'language': result['language'],
                        'code': result['language_code'],
                        'confidence': result['confidence']
                    })
                    
                    print(f"   Text: {text[:30]}{'...' if len(text) > 30 else ''}")
                    print(f"   → {result['language']} ({result['language_code']}) - {result['confidence']:.4f}")
                
                results_summary[model_name] = model_results
                print(f"✅ {model_name} completed successfully")
                
            except Exception as e:
                print(f"❌ {model_name}: {str(e)}")
                results_summary[model_name] = f"Error: {str(e)}"
        
        print(f"\n📊 All Model Combinations Testing Summary:")
        print("-" * 75)
        for model_name, results in results_summary.items():
            if isinstance(results, str):
                print(f"❌ {model_name}: {results}")
            else:
                avg_confidence = sum(r['confidence'] for r in results) / len(results)
                print(f"✅ {model_name}: Avg Confidence: {avg_confidence:.4f}")
        
        print("🎉 Comprehensive model comparison completed successfully!")
        return True
        
    except Exception as e:
        print(f"❌ Comprehensive test failed: {str(e)}")
        return False


def test_model_architecture():
    """Test the model architecture information for Model B Dataset B."""
    print("\n🏗️ Testing Model B Dataset B Architecture Information")
    print("=" * 75)
    
    try:
        detector = LanguageDetector(model_key="model-b-dataset-b")
        model_info = detector.get_current_model_info()
        
        # Verify key architecture information
        expected_info = {
            "architecture": "BERT",
            "dataset": "Dataset B",
            "accuracy": "99.85%",
            "model_size": "178M parameters"
        }
        
        print("🔍 Verifying model architecture information:")
        print("-" * 50)
        
        all_correct = True
        for key, expected_value in expected_info.items():
            actual_value = model_info.get(key, "Not found")
            if actual_value == expected_value:
                print(f"✅ {key}: {actual_value}")
            else:
                print(f"❌ {key}: Expected '{expected_value}', got '{actual_value}'")
                all_correct = False
        
        if all_correct:
            print("\n🎉 All architecture information verified successfully!")
        else:
            print("\n⚠️ Some architecture information mismatches found.")
        
        return all_correct
        
    except Exception as e:
        print(f"❌ Architecture test failed: {str(e)}")
        return False


if __name__ == "__main__":
    print("🚀 Starting Model B Dataset B Tests\n")
    
    # Run tests
    test1_passed = test_model_b_dataset_b()
    test2_passed = test_all_models_comprehensive()
    test3_passed = test_model_architecture()
    
    # Final results
    print("\n" + "=" * 75)
    if test1_passed and test2_passed and test3_passed:
        print("🎉 All tests passed! Model B Dataset B is ready to use.")
        print("🏆 This model offers the highest accuracy (99.85%) of all available models!")
        print("📝 Note: Optimized for 20 carefully selected languages for maximum precision.")
    else:
        print("❌ Some tests failed. Please check the implementation.")
        sys.exit(1)