File size: 10,954 Bytes
72f90b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
from backend.language_detector import LanguageDetector
def main():
# Initialize the language detector with default model (Model A Dataset A)
detector = LanguageDetector()
# Create Gradio interface
with gr.Blocks(title="Language Detection App", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🌍 Language Detection App")
gr.Markdown("Select a model and enter text below to detect its language with confidence scores.")
# Model Selection Section with visual styling
with gr.Group():
gr.Markdown(
"<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 16px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(99, 102, 241, 0.1), transparent); border-radius: 8px 8px 0 0;'>🤖 Model Selection</div>"
)
# Get available models
available_models = detector.get_available_models()
model_choices = []
model_info_map = {}
for key, info in available_models.items():
if info["status"] == "available":
model_choices.append((info["display_name"], key))
else:
model_choices.append((f"{info['display_name']} (Coming Soon)", key))
model_info_map[key] = info
model_selector = gr.Dropdown(
choices=model_choices,
value="model-a-dataset-a", # Default to Model A Dataset A
label="Choose Language Detection Model",
interactive=True
)
# Model Information Display
model_info_display = gr.Markdown(
value=_format_model_info(detector.get_current_model_info()),
label="Model Information"
)
# Add visual separator
gr.Markdown(
"<div style='margin: 24px 0; border-top: 3px solid rgba(99, 102, 241, 0.2); background: linear-gradient(90deg, transparent, rgba(99, 102, 241, 0.05), transparent); height: 2px;'></div>"
)
# Analysis Section
with gr.Group():
gr.Markdown(
"<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 16px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(34, 197, 94, 0.1), transparent); border-radius: 8px 8px 0 0;'>🔍 Language Analysis</div>"
)
with gr.Row():
with gr.Column(scale=2):
# Input section
text_input = gr.Textbox(
label="Text to Analyze",
placeholder="Enter text here to detect its language...",
lines=5,
max_lines=10
)
detect_btn = gr.Button("🔍 Detect Language", variant="primary", size="lg")
# Example texts
gr.Examples(
examples=[
["Hello, how are you today?"],
["Bonjour, comment allez-vous?"],
["Hola, ¿cómo estás?"],
["Guten Tag, wie geht es Ihnen?"],
["こんにちは、元気ですか?"],
["Привет, как дела?"],
["Ciao, come stai?"],
["Olá, como você está?"],
["你好,你好吗?"],
["안녕하세요, 어떻게 지내세요?"]
],
inputs=text_input,
label="Try these examples:"
)
with gr.Column(scale=2):
# Output section
with gr.Group():
gr.Markdown(
"<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 12px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(168, 85, 247, 0.1), transparent); border-radius: 8px 8px 0 0;'>📊 Detection Results</div>"
)
detected_language = gr.Textbox(
label="Detected Language",
interactive=False
)
confidence_score = gr.Number(
label="Confidence Score",
interactive=False,
precision=4
)
language_code = gr.Textbox(
label="Language Code (ISO 639-1)",
interactive=False
)
# Top predictions table
top_predictions = gr.Dataframe(
headers=["Language", "Code", "Confidence"],
label="Top 5 Predictions",
interactive=False,
wrap=True
)
# Status/Info section
with gr.Row():
status_text = gr.Textbox(
label="Status",
interactive=False,
visible=False
)
# Event handlers
def detect_language_wrapper(text, selected_model):
if not text.strip():
return (
"No text provided",
0.0,
"",
[],
gr.update(value="Please enter some text to analyze.", visible=True)
)
try:
# Switch model if needed
if detector.current_model_key != selected_model:
try:
detector.switch_model(selected_model)
except NotImplementedError:
return (
"Model unavailable",
0.0,
"",
[],
gr.update(value="This model is not yet implemented. Please select an available model.", visible=True)
)
except Exception as e:
return (
"Model error",
0.0,
"",
[],
gr.update(value=f"Error loading model: {str(e)}", visible=True)
)
result = detector.detect_language(text)
# Extract main prediction
main_lang = result['language']
main_confidence = result['confidence']
main_code = result['language_code']
# Format top predictions for table
predictions_table = [
[pred['language'], pred['language_code'], f"{pred['confidence']:.4f}"]
for pred in result['top_predictions']
]
model_info = result.get('metadata', {}).get('model_info', {})
model_name = model_info.get('name', 'Unknown Model')
return (
main_lang,
main_confidence,
main_code,
predictions_table,
gr.update(value=f"✅ Analysis Complete\n\nInput Text: {text[:100]}{'...' if len(text) > 100 else ''}\n\nDetected Language: {main_lang} ({main_code})\nConfidence: {main_confidence:.2%}\n\nModel: {model_name}", visible=True)
)
except Exception as e:
return (
"Error occurred",
0.0,
"",
[],
gr.update(value=f"Error: {str(e)}", visible=True)
)
def update_model_info(selected_model):
"""Update model information display when model selection changes."""
try:
if detector.current_model_key != selected_model:
detector.switch_model(selected_model)
model_info = detector.get_current_model_info()
return _format_model_info(model_info)
except NotImplementedError:
return "**This model is not yet implemented.** Please select an available model."
except Exception as e:
return f"**Error loading model information:** {str(e)}"
# Connect the button to the detection function
detect_btn.click(
fn=detect_language_wrapper,
inputs=[text_input, model_selector],
outputs=[detected_language, confidence_score, language_code, top_predictions, status_text]
)
# Also trigger on Enter key in text input
text_input.submit(
fn=detect_language_wrapper,
inputs=[text_input, model_selector],
outputs=[detected_language, confidence_score, language_code, top_predictions, status_text]
)
# Update model info when selection changes
model_selector.change(
fn=update_model_info,
inputs=[model_selector],
outputs=[model_info_display]
)
return app
def _format_model_info(model_info):
"""Format model information for display."""
if not model_info:
return "No model information available."
formatted_info = f"""
**{model_info.get('name', 'Unknown Model')}**
{model_info.get('description', 'No description available.')}
**📊 Performance:**
- Accuracy: {model_info.get('accuracy', 'N/A')}
- Model Size: {model_info.get('model_size', 'N/A')}
**🏗️ Architecture:**
- Model Architecture: {model_info.get('architecture', 'N/A')}
- Base Model: {model_info.get('base_model', 'N/A')}
- Training Dataset: {model_info.get('dataset', 'N/A')}
**🌐 Languages:** {model_info.get('languages_supported', 'N/A')}
**⚙️ Training Details:** {model_info.get('training_details', 'N/A')}
**💡 Use Cases:** {model_info.get('use_cases', 'N/A')}
**✅ Strengths:** {model_info.get('strengths', 'N/A')}
**⚠️ Limitations:** {model_info.get('limitations', 'N/A')}
"""
return formatted_info
if __name__ == "__main__":
app = main()
app.launch() |