File size: 17,237 Bytes
72f90b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc19973
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import gradio as gr
import pandas as pd
from backend.language_detector import LanguageDetector
from typing import List, Dict, Any
import time

# Import demo samples from demo_page
from demo_page import DEMO_SAMPLES, initialize_models, detect_with_all_models, create_results_dataframe, run_demo_tests

def create_single_model_interface():
    """Create the original single model interface."""
    # Initialize the language detector with default model (Model A Dataset A)
    detector = LanguageDetector()
    
    with gr.Column() as single_interface:
        gr.Markdown("# 🌍 Language Detection App")
        gr.Markdown("Select a model and enter text below to detect its language with confidence scores.")
        
        # Model Selection Section with visual styling
        with gr.Group():
            gr.Markdown(
                "<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 16px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(99, 102, 241, 0.1), transparent); border-radius: 8px 8px 0 0;'>🤖 Model Selection</div>"
            )
            
            # Get available models
            available_models = detector.get_available_models()
            model_choices = []
            model_info_map = {}
            
            for key, info in available_models.items():
                if info["status"] == "available":
                    model_choices.append((info["display_name"], key))
                else:
                    model_choices.append((f"{info['display_name']} (Coming Soon)", key))
                model_info_map[key] = info
            
            model_selector = gr.Dropdown(
                choices=model_choices,
                value="model-a-dataset-a",  # Default to Model A Dataset A
                label="Choose Language Detection Model",
                interactive=True
            )
            
            # Model Information Display
            model_info_display = gr.Markdown(
                value=_format_model_info(detector.get_current_model_info()),
                label="Model Information"
            )
        
        # Add visual separator
        gr.Markdown(
            "<div style='margin: 24px 0; border-top: 3px solid rgba(99, 102, 241, 0.2); background: linear-gradient(90deg, transparent, rgba(99, 102, 241, 0.05), transparent); height: 2px;'></div>"
        )
        
        # Analysis Section
        with gr.Group():
            gr.Markdown(
                "<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 16px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(34, 197, 94, 0.1), transparent); border-radius: 8px 8px 0 0;'>🔍 Language Analysis</div>"
            )
            
            with gr.Row():
                with gr.Column(scale=2):
                    # Input section
                    text_input = gr.Textbox(
                        label="Text to Analyze",
                        placeholder="Enter text here to detect its language...",
                        lines=5,
                        max_lines=10
                    )
                    
                    detect_btn = gr.Button("🔍 Detect Language", variant="primary", size="lg")
                    
                    # Example texts
                    gr.Examples(
                        examples=[
                            ["Hello, how are you today?"],
                            ["Bonjour, comment allez-vous?"],
                            ["Hola, ¿cómo estás?"],
                            ["Guten Tag, wie geht es Ihnen?"],
                            ["こんにちは、元気ですか?"],
                            ["Привет, как дела?"],
                            ["Ciao, come stai?"],
                            ["Olá, como você está?"],
                            ["你好,你好吗?"],
                            ["안녕하세요, 어떻게 지내세요?"]
                        ],
                        inputs=text_input,
                        label="Try these examples:"
                    )
                
                with gr.Column(scale=2):
                    # Output section
                    with gr.Group():
                        gr.Markdown(
                            "<div style='text-align: center; padding: 16px 0 8px 0; margin-bottom: 12px; font-size: 18px; font-weight: 600; border-bottom: 2px solid; background: linear-gradient(90deg, transparent, rgba(168, 85, 247, 0.1), transparent); border-radius: 8px 8px 0 0;'>📊 Detection Results</div>"
                        )
                        
                        detected_language = gr.Textbox(
                            label="Detected Language",
                            interactive=False
                        )
                        
                        confidence_score = gr.Number(
                            label="Confidence Score",
                            interactive=False,
                            precision=4
                        )
                        
                        language_code = gr.Textbox(
                            label="Language Code (ISO 639-1)",
                            interactive=False
                        )
                        
                        # Top predictions table
                        top_predictions = gr.Dataframe(
                            headers=["Language", "Code", "Confidence"],
                            label="Top 5 Predictions",
                            interactive=False,
                            wrap=True
                        )
        
        # Status/Info section
        with gr.Row():
            status_text = gr.Textbox(
                label="Status",
                interactive=False,
                visible=False
            )
        
        # Event handlers
        def detect_language_wrapper(text, selected_model):
            if not text.strip():
                return (
                    "No text provided",
                    0.0,
                    "",
                    [],
                    gr.update(value="Please enter some text to analyze.", visible=True)
                )
            
            try:
                # Switch model if needed
                if detector.current_model_key != selected_model:
                    try:
                        detector.switch_model(selected_model)
                    except NotImplementedError:
                        return (
                            "Model unavailable",
                            0.0,
                            "",
                            [],
                            gr.update(value="This model is not yet implemented. Please select an available model.", visible=True)
                        )
                    except Exception as e:
                        return (
                            "Model error",
                            0.0,
                            "",
                            [],
                            gr.update(value=f"Error loading model: {str(e)}", visible=True)
                        )
                
                result = detector.detect_language(text)
                
                # Extract main prediction
                main_lang = result['language']
                main_confidence = result['confidence']
                main_code = result['language_code']
                
                # Format top predictions for table
                predictions_table = [
                    [pred['language'], pred['language_code'], f"{pred['confidence']:.4f}"]
                    for pred in result['top_predictions']
                ]
                
                model_info = result.get('metadata', {}).get('model_info', {})
                model_name = model_info.get('name', 'Unknown Model')
                
                return (
                    main_lang,
                    main_confidence,
                    main_code,
                    predictions_table,
                    gr.update(value=f"✅ Analysis Complete\n\nInput Text: {text[:100]}{'...' if len(text) > 100 else ''}\n\nDetected Language: {main_lang} ({main_code})\nConfidence: {main_confidence:.2%}\n\nModel: {model_name}", visible=True)
                )
                
            except Exception as e:
                return (
                    "Error occurred",
                    0.0,
                    "",
                    [],
                    gr.update(value=f"Error: {str(e)}", visible=True)
                )
        
        def update_model_info(selected_model):
            """Update model information display when model selection changes."""
            try:
                if detector.current_model_key != selected_model:
                    detector.switch_model(selected_model)
                model_info = detector.get_current_model_info()
                return _format_model_info(model_info)
            except NotImplementedError:
                return "**This model is not yet implemented.** Please select an available model."
            except Exception as e:
                return f"**Error loading model information:** {str(e)}"
        
        # Connect the button to the detection function
        detect_btn.click(
            fn=detect_language_wrapper,
            inputs=[text_input, model_selector],
            outputs=[detected_language, confidence_score, language_code, top_predictions, status_text]
        )
        
        # Also trigger on Enter key in text input
        text_input.submit(
            fn=detect_language_wrapper,
            inputs=[text_input, model_selector],
            outputs=[detected_language, confidence_score, language_code, top_predictions, status_text]
        )
        
        # Update model info when selection changes
        model_selector.change(
            fn=update_model_info,
            inputs=[model_selector],
            outputs=[model_info_display]
        )
    
    return single_interface

def create_demo_comparison_interface():
    """Create the demo comparison interface."""
    
    # Initialize models
    models = initialize_models()
    
    with gr.Column() as demo_interface:
        gr.Markdown("# 🚀 Language Detection Demo - Model Comparison")
        gr.Markdown("Compare all four language detection models simultaneously across various difficulty categories.")
        
        # Model Status Section
        with gr.Group():
            gr.Markdown("## 🤖 Model Status")
            model_status_text = ""
            for model_key, model_info in models.items():
                status_icon = "✅" if model_info["status"] == "Ready" else "❌"
                model_status_text += f"{status_icon} **{model_info['name']}**: {model_info['status']}\n\n"
            gr.Markdown(model_status_text)
        
        # Category Selection Section
        with gr.Group():
            gr.Markdown("## 📊 Test Categories")
            gr.Markdown("Select categories to test different aspects of language detection difficulty:")
            
            category_checkboxes = gr.CheckboxGroup(
                choices=list(DEMO_SAMPLES.keys()),
                label="Select Test Categories",
                value=["Easy/Obvious", "Short Text"],  # Default selection
                interactive=True
            )
        
        # Custom Text Input Section
        with gr.Group():
            gr.Markdown("## ✏️ Custom Text Input")
            gr.Markdown("Enter your own texts to test (one per line):")
            
            custom_text_input = gr.Textbox(
                label="Custom Texts",
                placeholder="Enter custom texts here, one per line...\nExample:\nHello world\nBonjour le monde\n你好世界",
                lines=5,
                max_lines=10
            )
        
        # Control Buttons
        with gr.Row():
            run_demo_btn = gr.Button("🔍 Run Demo Tests", variant="primary", size="lg")
            clear_btn = gr.Button("🗑️ Clear Results", variant="secondary")
        
        # Sample Preview Section (moved up, condensed)
        with gr.Group():
            gr.Markdown("## 📚 Category Explanations")
            gr.Markdown("Understanding what each test category evaluates:")
            
            category_explanations = """
**Easy/Obvious:** Clear, unambiguous sentences in their native language. Tests basic language detection capability.

**Short Text:** Single words or very short phrases. Tests model performance with minimal context.

**False Friends:** Words that look similar across languages but have different meanings. Tests ability to distinguish between closely related languages.

**Mixed Scripts:** Text containing multiple languages, numbers, symbols, or scripts. Tests handling of multilingual content.

**Proper Nouns:** Names of people, places, or entities that exist across multiple languages. Tests context-dependent detection.

**Common Words:** International words with similar spelling across languages (hotel, taxi, etc.). Tests disambiguation of universal terms.

**Technical Terms:** Specialized vocabulary that may be borrowed or translated across languages. Tests domain-specific detection.

**Code-switching:** Text that switches between languages mid-sentence. Tests handling of bilingual communication patterns.

**Transliterated Text:** Non-Latin scripts written in Latin characters. Tests recognition of transliteration vs. native language.

**Ambiguous Script:** Words that could belong to multiple languages with identical spelling. Tests the model's decision-making under uncertainty.
"""
            
            gr.Markdown(category_explanations)
        
        # Results Section (moved to bottom)
        with gr.Group():
            gr.Markdown("## 📈 Results")
            
            summary_output = gr.Textbox(
                label="Summary",
                interactive=False,
                visible=False
            )
            
            results_dataframe = gr.Dataframe(
                label="Model Comparison Results (A-A: Model A Dataset A, B-A: Model B Dataset A, A-B: Model A Dataset B, B-B: Model B Dataset B)",
                wrap=True,
                interactive=False,
                visible=False
            )
        
        # Event Handlers
        def run_tests(selected_cats, custom_texts):
            summary, df = run_demo_tests(selected_cats, custom_texts, models)
            
            if df is not None:
                return (
                    gr.update(value=summary, visible=True),
                    gr.update(value=df, visible=True)
                )
            else:
                return (
                    gr.update(value=summary, visible=True),
                    gr.update(visible=False)
                )
        
        def clear_results():
            return (
                gr.update(value="", visible=False),
                gr.update(value=None, visible=False)
            )
        
        # Connect event handlers
        run_demo_btn.click(
            fn=run_tests,
            inputs=[category_checkboxes, custom_text_input],
            outputs=[summary_output, results_dataframe]
        )
        
        clear_btn.click(
            fn=clear_results,
            outputs=[summary_output, results_dataframe]
        )
    
    return demo_interface

def _format_model_info(model_info):
    """Format model information for display."""
    if not model_info:
        return "No model information available."
    
    formatted_info = f"""
**{model_info.get('name', 'Unknown Model')}**

{model_info.get('description', 'No description available.')}

**📊 Performance:**
- Accuracy: {model_info.get('accuracy', 'N/A')}
- Model Size: {model_info.get('model_size', 'N/A')}

**🏗️ Architecture:**
- Model Architecture: {model_info.get('architecture', 'N/A')}
- Base Model: {model_info.get('base_model', 'N/A')}
- Training Dataset: {model_info.get('dataset', 'N/A')}

**🌐 Languages:** {model_info.get('languages_supported', 'N/A')}

**⚙️ Training Details:** {model_info.get('training_details', 'N/A')}

**💡 Use Cases:** {model_info.get('use_cases', 'N/A')}

**✅ Strengths:** {model_info.get('strengths', 'N/A')}

**⚠️ Limitations:** {model_info.get('limitations', 'N/A')}
"""
    return formatted_info

def main():
    """Create the main application with tabbed interface."""
    
    with gr.Blocks(title="Language Detection App Suite", theme=gr.themes.Soft()) as app:
        gr.Markdown("# 🌍 Language Detection App Suite")
        gr.Markdown("Choose between single model testing or comprehensive model comparison.")
        
        with gr.Tabs():
            with gr.TabItem("🔍 Single Model Detection"):
                single_model_interface = create_single_model_interface()
            
            with gr.TabItem("🚀 Model Comparison Demo"):
                demo_comparison_interface = create_demo_comparison_interface()
    
    return app

if __name__ == "__main__":
    app = main()
    app.launch()