Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,14 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
from __future__ import annotations
|
| 3 |
-
import argparse
|
| 4 |
import os
|
| 5 |
-
import sys
|
| 6 |
import random
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
import uuid
|
| 10 |
-
import
|
| 11 |
-
from diffusers import ConsistencyDecoderVAE, DPMSolverMultistepScheduler, Transformer2DModel, AutoencoderKL
|
| 12 |
import torch
|
| 13 |
from typing import Tuple
|
| 14 |
from datetime import datetime
|
| 15 |
-
from peft import PeftModel
|
| 16 |
-
from diffusers_patches import pixart_sigma_init_patched_inputs, PixArtSigmaPipeline
|
| 17 |
|
| 18 |
|
| 19 |
DESCRIPTION = """ # Instant Image
|
|
@@ -91,36 +86,13 @@ style_list = [
|
|
| 91 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 92 |
STYLE_NAMES = list(styles.keys())
|
| 93 |
DEFAULT_STYLE_NAME = "(No style)"
|
| 94 |
-
SCHEDULE_NAME = ["DPM-Solver"]
|
| 95 |
-
DEFAULT_SCHEDULE_NAME = "DPM-Solver"
|
| 96 |
NUM_IMAGES_PER_PROMPT = 1
|
| 97 |
|
| 98 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 99 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 100 |
-
if not negative:
|
| 101 |
-
negative = ""
|
| 102 |
-
return p.replace("{prompt}", positive), n + negative
|
| 103 |
-
|
| 104 |
-
|
| 105 |
if torch.cuda.is_available():
|
| 106 |
-
weight_dtype = torch.float16
|
| 107 |
-
T5_token_max_length = 300
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
"using scripts.diffusers_patches.pixart_sigma_init_patched_inputs")
|
| 113 |
-
setattr(Transformer2DModel, '_init_patched_inputs', pixart_sigma_init_patched_inputs)
|
| 114 |
-
|
| 115 |
-
transformer = Transformer2DModel.from_pretrained(
|
| 116 |
-
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
| 117 |
-
subfolder='transformer',
|
| 118 |
-
torch_dtype=weight_dtype,
|
| 119 |
-
)
|
| 120 |
-
pipe = PixArtSigmaPipeline.from_pretrained(
|
| 121 |
-
"PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
| 122 |
-
transformer=transformer,
|
| 123 |
-
torch_dtype=weight_dtype,
|
| 124 |
use_safetensors=True,
|
| 125 |
)
|
| 126 |
|
|
@@ -141,7 +113,6 @@ if torch.cuda.is_available():
|
|
| 141 |
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
| 142 |
print("Model Compiled!")
|
| 143 |
|
| 144 |
-
|
| 145 |
def save_image(img):
|
| 146 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 147 |
img.save(unique_name)
|
|
@@ -152,10 +123,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 152 |
seed = random.randint(0, MAX_SEED)
|
| 153 |
return seed
|
| 154 |
|
| 155 |
-
|
| 156 |
-
@torch.no_grad()
|
| 157 |
-
@torch.inference_mode()
|
| 158 |
-
@spaces.GPU(duration=30)
|
| 159 |
def generate(
|
| 160 |
prompt: str,
|
| 161 |
negative_prompt: str = "",
|
|
@@ -163,11 +130,9 @@ def generate(
|
|
| 163 |
use_negative_prompt: bool = False,
|
| 164 |
num_imgs: int = 1,
|
| 165 |
seed: int = 0,
|
| 166 |
-
width: int =
|
| 167 |
-
height: int =
|
| 168 |
-
|
| 169 |
-
dpms_guidance_scale: float = 3.5,
|
| 170 |
-
dpms_inference_steps: int = 9,
|
| 171 |
randomize_seed: bool = False,
|
| 172 |
use_resolution_binning: bool = True,
|
| 173 |
progress=gr.Progress(track_tqdm=True),
|
|
@@ -175,15 +140,7 @@ def generate(
|
|
| 175 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 176 |
generator = torch.Generator().manual_seed(seed)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
if not isinstance(pipe.scheduler, DPMSolverMultistepScheduler):
|
| 180 |
-
pipe.scheduler = DPMSolverMultistepScheduler()
|
| 181 |
-
num_inference_steps = dpms_inference_steps
|
| 182 |
-
guidance_scale = dpms_guidance_scale
|
| 183 |
-
else:
|
| 184 |
-
raise ValueError(f"Unknown schedule: {schedule}")
|
| 185 |
-
|
| 186 |
-
if not use_negative_prompt:
|
| 187 |
negative_prompt = None # type: ignore
|
| 188 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
| 189 |
|
|
@@ -195,10 +152,9 @@ def generate(
|
|
| 195 |
guidance_scale=guidance_scale,
|
| 196 |
num_inference_steps=num_inference_steps,
|
| 197 |
generator=generator,
|
| 198 |
-
num_images_per_prompt=
|
| 199 |
use_resolution_binning=use_resolution_binning,
|
| 200 |
output_type="pil",
|
| 201 |
-
max_sequence_length=T5_token_max_length,
|
| 202 |
).images
|
| 203 |
|
| 204 |
image_paths = [save_image(img) for img in images]
|
|
@@ -242,16 +198,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 242 |
with gr.Group():
|
| 243 |
with gr.Row():
|
| 244 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
label="Sampler Schedule",
|
| 253 |
-
visible=True,
|
| 254 |
-
)
|
| 255 |
num_imgs = gr.Slider(
|
| 256 |
label="Num Images",
|
| 257 |
minimum=1,
|
|
@@ -287,29 +240,23 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 287 |
minimum=256,
|
| 288 |
maximum=MAX_IMAGE_SIZE,
|
| 289 |
step=32,
|
| 290 |
-
value=
|
| 291 |
)
|
| 292 |
height = gr.Slider(
|
| 293 |
label="Height",
|
| 294 |
minimum=256,
|
| 295 |
maximum=MAX_IMAGE_SIZE,
|
| 296 |
step=32,
|
| 297 |
-
value=
|
| 298 |
-
)
|
| 299 |
-
with gr.Row():
|
| 300 |
-
dpms_guidance_scale = gr.Slider(
|
| 301 |
-
label="Temprature",
|
| 302 |
-
minimum=3,
|
| 303 |
-
maximum=4,
|
| 304 |
-
step=0.1,
|
| 305 |
-
value=3.5,
|
| 306 |
)
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
| 313 |
)
|
| 314 |
|
| 315 |
gr.Examples(
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
import random
|
| 4 |
+
import uuid
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import uuid
|
| 8 |
+
from diffusers import PixArtAlphaPipeline, LCMScheduler
|
|
|
|
| 9 |
import torch
|
| 10 |
from typing import Tuple
|
| 11 |
from datetime import datetime
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
DESCRIPTION = """ # Instant Image
|
|
|
|
| 86 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 87 |
STYLE_NAMES = list(styles.keys())
|
| 88 |
DEFAULT_STYLE_NAME = "(No style)"
|
|
|
|
|
|
|
| 89 |
NUM_IMAGES_PER_PROMPT = 1
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
| 94 |
+
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
| 95 |
+
torch_dtype=torch.float16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
use_safetensors=True,
|
| 97 |
)
|
| 98 |
|
|
|
|
| 113 |
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
| 114 |
print("Model Compiled!")
|
| 115 |
|
|
|
|
| 116 |
def save_image(img):
|
| 117 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 118 |
img.save(unique_name)
|
|
|
|
| 123 |
seed = random.randint(0, MAX_SEED)
|
| 124 |
return seed
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
def generate(
|
| 127 |
prompt: str,
|
| 128 |
negative_prompt: str = "",
|
|
|
|
| 130 |
use_negative_prompt: bool = False,
|
| 131 |
num_imgs: int = 1,
|
| 132 |
seed: int = 0,
|
| 133 |
+
width: int = 1024,
|
| 134 |
+
height: int = 1024,
|
| 135 |
+
num_inference_steps: int = 4,
|
|
|
|
|
|
|
| 136 |
randomize_seed: bool = False,
|
| 137 |
use_resolution_binning: bool = True,
|
| 138 |
progress=gr.Progress(track_tqdm=True),
|
|
|
|
| 140 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 141 |
generator = torch.Generator().manual_seed(seed)
|
| 142 |
|
| 143 |
+
if not use_negative_prompt:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
negative_prompt = None # type: ignore
|
| 145 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
| 146 |
|
|
|
|
| 152 |
guidance_scale=guidance_scale,
|
| 153 |
num_inference_steps=num_inference_steps,
|
| 154 |
generator=generator,
|
| 155 |
+
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 156 |
use_resolution_binning=use_resolution_binning,
|
| 157 |
output_type="pil",
|
|
|
|
| 158 |
).images
|
| 159 |
|
| 160 |
image_paths = [save_image(img) for img in images]
|
|
|
|
| 198 |
with gr.Group():
|
| 199 |
with gr.Row():
|
| 200 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
| 201 |
+
negative_prompt = gr.Text(
|
| 202 |
+
label="Negative prompt",
|
| 203 |
+
max_lines=1,
|
| 204 |
+
placeholder="Enter a negative prompt",
|
| 205 |
+
visible=True,
|
| 206 |
+
)
|
| 207 |
+
|
|
|
|
|
|
|
|
|
|
| 208 |
num_imgs = gr.Slider(
|
| 209 |
label="Num Images",
|
| 210 |
minimum=1,
|
|
|
|
| 240 |
minimum=256,
|
| 241 |
maximum=MAX_IMAGE_SIZE,
|
| 242 |
step=32,
|
| 243 |
+
value=1024,
|
| 244 |
)
|
| 245 |
height = gr.Slider(
|
| 246 |
label="Height",
|
| 247 |
minimum=256,
|
| 248 |
maximum=MAX_IMAGE_SIZE,
|
| 249 |
step=32,
|
| 250 |
+
value=1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
)
|
| 252 |
+
with gr.Row():
|
| 253 |
+
inference_steps = gr.Slider(
|
| 254 |
+
label="Steps",
|
| 255 |
+
minimum=1,
|
| 256 |
+
maximum=30,
|
| 257 |
+
step=1,
|
| 258 |
+
value=6,
|
| 259 |
+
) value=9,
|
| 260 |
)
|
| 261 |
|
| 262 |
gr.Examples(
|