Spaces:
Sleeping
Sleeping
File size: 12,462 Bytes
33f62f4 908cc60 33f62f4 b545d26 33f62f4 073f668 33f62f4 c8bdb71 fffaa23 33f62f4 5864223 33f62f4 cfac815 cc398fb 33f62f4 cfac815 7d68b4d 33f62f4 cfac815 7d68b4d 85838a0 cfac815 7d68b4d f33836c 33f62f4 4e69a90 33f62f4 5864223 33f62f4 0acd026 206c3d4 0acd026 33f62f4 0acd026 33f62f4 cfac815 33f62f4 5864223 908cc60 33f62f4 b545d26 908cc60 0acd026 b545d26 cfac815 33f62f4 5864223 f33836c 5864223 f33836c 5864223 33f62f4 cfac815 908cc60 5864223 908cc60 33f62f4 908cc60 33f62f4 5864223 5e03bde 908cc60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import torch
import spaces
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
# from gradio_litmodel3d import LitModel3D
import shutil
def find_cuda():
# 检查 CUDA_HOME 或 CUDA_PATH 环境变量是否已设置
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
# 在系统 PATH 中搜索 nvcc 可执行文件
nvcc_path = shutil.which('nvcc')
if nvcc_path:
# 删除“bin/nvcc”部分,获取 CUDA 安装路径
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA 已安装在:{cuda_path}")
else:
print("未找到已安装的 CUDA 路径")
# 从 HF 加载预训练模型
class LRMGeneratorWrapper:
def __init__(self):
self.config = AutoConfig.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
self.model = AutoModel.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
def forward(self, image, camera):
return self.model(image, camera)
model_wrapper = LRMGeneratorWrapper()
# 处理输入图像
def preprocess_image(image, source_size):
session = new_session("isnet-general-use")
rembg_remove = partial(remove, session=session)
image = np.array(image)
image = rembg_remove(image)
mask = rembg_remove(image, only_mask=True)
image = recenter(image, mask, border_ratio=0.20)
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4:
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
return torch.cat([
RT.reshape(-1, 12),
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
], dim=-1)
def _default_intrinsics():
fx = fy = 384
cx = cy = 256
w = h = 512
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=torch.float32)
return intrinsics
def _default_source_camera(batch_size: int = 1):
canonical_camera_extrinsics = torch.tensor([[
[0, 0, 1, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
]], dtype=torch.float32)
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
"""
camera_position: (M, 3)
look_at: (3)
up_world: (3)
return: (M, 3, 4)
"""
# 默认情况下,从原点向上为 pos-z
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def compose_extrinsic_RT(RT: torch.Tensor):
"""
从 RT 生成标准形式的外差矩阵。
分批输入/输出。
"""
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
], dim=1)
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
E = compose_extrinsic_RT(RT)
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def _default_render_cameras(batch_size: int = 1):
M = 80
radius = 1.5
elevation = 0
camera_positions = []
rand_theta = np.random.uniform(0, np.pi/180)
elevation = np.radians(elevation)
for i in range(M):
theta = 2 * np.pi * i / M + rand_theta
x = radius * np.cos(theta) * np.cos(elevation)
y = radius * np.sin(theta) * np.cos(elevation)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
extrinsics = _center_looking_at_camera_pose(camera_positions)
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
@spaces.GPU
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=False, fps=30):
image = preprocess_image(image, source_size).to(model_wrapper.device)
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
with torch.no_grad():
planes = model_wrapper.forward(image, source_camera)
if export_mesh:
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "xiaoxis_mesh.obj"
mesh.export(mesh_path, 'obj')
return None, mesh_path
if export_video:
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
frames = []
chunk_size = 1
for i in range(0, render_cameras.shape[1], chunk_size):
frame_chunk = model_wrapper.model.synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size,
render_size,
0,
0
)
frames.append(frame_chunk['images_rgb'])
frames = torch.cat(frames, dim=1)
frames = frames.squeeze(0)
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
video_path = "xiaoxis_video.mp4"
imageio.mimwrite(video_path, frames, fps=fps)
return None, video_path
return planes, None
return None, None
def step_1_generate_planes(image):
planes, _ = generate_mesh(image)
return planes
def step_2_generate_obj(image):
_, mesh_path = generate_mesh(image, export_mesh=True)
return mesh_path, mesh_path
def step_3_generate_video(image):
_, video_path = generate_mesh(image, export_video=True)
return video_path, video_path
# 从 assets 文件夹中设置示例文件,并限制最多读取 10 个文件
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))][:10]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("""
# 图像升维计算模型:EMU Video 的衍生尝试
我们利用视频扩散模型作为多视图数据生成器,从而促进可扩展 3D 生成模型的学习。以下展示了视频扩散模型作为多视图数据引擎的潜力,能够生成无限规模的合成数据以支持可扩展的训练。我们提出的模型从合成数据中学习,在生成 3D 资产方面表现出卓越的性能。
除了当前状态之外,我们的模型还具有高度可扩展性,并且可以根据合成数据和 3D 数据的数量进行扩展,为 3D 生成模型铺平了新的道路。
""")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="输入图像")
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=5)
generate_mesh_button = gr.Button("生成模型")
generate_video_button = gr.Button("生成视频")
with gr.Column():
# model_output = LitModel3D(
# clear_color=[0, 0, 0, 0], # 可调整背景颜色,以获得更好的对比度
# label="模型可视化",
# scale=1.0,
# tonemapping="aces", # 可使用 aces 色调映射,使灯光更逼真
# exposure=1.1, # 可调节曝光以控制亮度
# contrast=1.1, # 可略微增加对比度,以获得更好的深度
# camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
# zoom_speed=0.5, # 将调整变焦速度,以便更好地控制
# pan_speed=0.5, # 将调整摇摄速度,以便更好地控制
# interactive=False # 这样用户就可以与模型进行交互
# )
model_output = gr.Model3D(
clear_color=(0.0, 0.0, 0.0, 0.0), # 可调整背景颜色,以获得更好的对比度
label="模型可视化",
scale=1,
camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
zoom_speed=0.5, # 将调整变焦速度,以便更好地控制
pan_speed=0.5, # 将调整摇摄速度,以便更好地控制
interactive=False # 这样用户就可以与模型进行交互
)
with gr.Row():
with gr.Column():
obj_file_output = gr.File(label="下载 .obj 文件")
video_file_output = gr.File(label="下载视频")
with gr.Column():
video_output = gr.Video(label="360° 视频")
# 清除输出
def clear_model_viewer():
"""在加载新模型前重置 Gradio。"""
return None, None
# 清除输出的数据
img_input.change(fn=clear_model_viewer, outputs=[model_output, video_output])
# 生成模型和视频
generate_mesh_button.click(fn=step_2_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
generate_video_button.click(fn=step_3_generate_video, inputs=img_input, outputs=[video_file_output, video_output])
demo.launch(
# auth=(os.environ.get('AUTH_USERNAME'), os.environ.get('AUTH_PASSWORD'))
)
|