File size: 12,462 Bytes
33f62f4
 
 
 
 
 
 
 
 
 
908cc60
33f62f4
 
 
 
b545d26
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073f668
33f62f4
 
 
c8bdb71
fffaa23
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5864223
33f62f4
cfac815
cc398fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f62f4
cfac815
7d68b4d
 
33f62f4
cfac815
7d68b4d
 
85838a0
cfac815
7d68b4d
f33836c
33f62f4
 
 
4e69a90
33f62f4
5864223
33f62f4
 
0acd026
206c3d4
 
 
0acd026
33f62f4
0acd026
 
33f62f4
cfac815
33f62f4
5864223
908cc60
33f62f4
b545d26
 
 
 
 
 
 
 
 
 
 
 
 
908cc60
0acd026
b545d26
cfac815
 
 
 
33f62f4
5864223
 
 
f33836c
5864223
 
f33836c
5864223
 
33f62f4
cfac815
908cc60
5864223
908cc60
 
33f62f4
908cc60
 
 
33f62f4
5864223
5e03bde
908cc60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import torch
import spaces
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
# from gradio_litmodel3d import LitModel3D
import shutil

def find_cuda():
    # 检查 CUDA_HOME 或 CUDA_PATH 环境变量是否已设置
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # 在系统 PATH 中搜索 nvcc 可执行文件
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # 删除“bin/nvcc”部分,获取 CUDA 安装路径
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA 已安装在:{cuda_path}")
else:
    print("未找到已安装的 CUDA 路径")

# 从 HF 加载预训练模型
class LRMGeneratorWrapper:
    def __init__(self):
        self.config = AutoConfig.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
        self.model = AutoModel.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()

    def forward(self, image, camera):
        return self.model(image, camera)

model_wrapper = LRMGeneratorWrapper()

# 处理输入图像
def preprocess_image(image, source_size):
    session = new_session("isnet-general-use")
    rembg_remove = partial(remove, session=session)
    image = np.array(image)
    image = rembg_remove(image)
    mask = rembg_remove(image, only_mask=True)
    image = recenter(image, mask, border_ratio=0.20)
    image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
    if image.shape[1] == 4:
        image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
    image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
    image = torch.clamp(image, 0, 1)
    return image

def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
    fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
    cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
    width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
    fx, fy = fx / width, fy / height
    cx, cy = cx / width, cy / height
    return fx, fy, cx, cy

def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    return torch.cat([
        RT.reshape(-1, 12),
        fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
    ], dim=-1)

def _default_intrinsics():
    fx = fy = 384
    cx = cy = 256
    w = h = 512
    intrinsics = torch.tensor([
        [fx, fy],
        [cx, cy],
        [w, h],
    ], dtype=torch.float32)
    return intrinsics

def _default_source_camera(batch_size: int = 1):
    canonical_camera_extrinsics = torch.tensor([[
        [0, 0, 1, 1],
        [1, 0, 0, 0],
        [0, 1, 0, 0],
    ]], dtype=torch.float32)
    canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
    source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
    return source_camera.repeat(batch_size, 1)

def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
    """
    camera_position: (M, 3)
    look_at: (3)
    up_world: (3)
    return: (M, 3, 4)
    """
    # 默认情况下,从原点向上为 pos-z
    if look_at is None:
        look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
    if up_world is None:
        up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
    look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
    up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)

    z_axis = camera_position - look_at
    z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
    x_axis = torch.cross(up_world, z_axis)
    x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
    y_axis = torch.cross(z_axis, x_axis)
    y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
    extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
    return extrinsics

def compose_extrinsic_RT(RT: torch.Tensor):
    """
    从 RT 生成标准形式的外差矩阵。
    分批输入/输出。
    """
    return torch.cat([
        RT,
        torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
        ], dim=1)

def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
    """
    RT: (N, 3, 4)
    intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
    """
    E = compose_extrinsic_RT(RT)
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    I = torch.stack([
        torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
        torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
        torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
    ], dim=1)
    return torch.cat([
        E.reshape(-1, 16),
        I.reshape(-1, 9),
    ], dim=-1)

def _default_render_cameras(batch_size: int = 1):
    M = 80
    radius = 1.5
    elevation = 0
    camera_positions = []
    rand_theta = np.random.uniform(0, np.pi/180)
    elevation = np.radians(elevation)
    for i in range(M):
        theta = 2 * np.pi * i / M + rand_theta
        x = radius * np.cos(theta) * np.cos(elevation)
        y = radius * np.sin(theta) * np.cos(elevation)
        z = radius * np.sin(elevation)
        camera_positions.append([x, y, z])
    camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
    extrinsics = _center_looking_at_camera_pose(camera_positions)

    render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
    render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
    return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)

@spaces.GPU
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=False, fps=30):
    image = preprocess_image(image, source_size).to(model_wrapper.device)
    source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)

    with torch.no_grad():
        planes = model_wrapper.forward(image, source_camera)

        if export_mesh:
            grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
            vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
            vtx = vtx / (mesh_size - 1) * 2 - 1
            vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
            vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
            vtx_colors = (vtx_colors * 255).astype(np.uint8)
            mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)

            mesh_path = "xiaoxis_mesh.obj"
            mesh.export(mesh_path, 'obj')

            return None, mesh_path

        if export_video:
            render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
            frames = []
            chunk_size = 1
            for i in range(0, render_cameras.shape[1], chunk_size):
                frame_chunk = model_wrapper.model.synthesizer(
                    planes,
                    render_cameras[:, i:i + chunk_size],
                    render_size,
                    render_size,
                    0,
                    0
                )
                frames.append(frame_chunk['images_rgb'])

            frames = torch.cat(frames, dim=1)
            frames = frames.squeeze(0)
            frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)

            video_path = "xiaoxis_video.mp4"
            imageio.mimwrite(video_path, frames, fps=fps)

            return None, video_path

        return planes, None

    return None, None

def step_1_generate_planes(image):
    planes, _ = generate_mesh(image)
    return planes

def step_2_generate_obj(image):
    _, mesh_path = generate_mesh(image, export_mesh=True)
    return mesh_path, mesh_path

def step_3_generate_video(image):
    _, video_path = generate_mesh(image, export_video=True)
    return video_path, video_path

# 从 assets 文件夹中设置示例文件,并限制最多读取 10 个文件
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))][:10]


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("""
        # 图像升维计算模型:EMU Video 的衍生尝试
        我们利用视频扩散模型作为多视图数据生成器,从而促进可扩展 3D 生成模型的学习。以下展示了视频扩散模型作为多视图数据引擎的潜力,能够生成无限规模的合成数据以支持可扩展的训练。我们提出的模型从合成数据中学习,在生成 3D 资产方面表现出卓越的性能。
        除了当前状态之外,我们的模型还具有高度可扩展性,并且可以根据合成数据和 3D 数据的数量进行扩展,为 3D 生成模型铺平了新的道路。
        """)

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(type="pil", label="输入图像")
            examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=5)
            generate_mesh_button = gr.Button("生成模型")
            generate_video_button = gr.Button("生成视频")

        with gr.Column():
            # model_output = LitModel3D(
            #     clear_color=[0, 0, 0, 0],  # 可调整背景颜色,以获得更好的对比度
            #     label="模型可视化",
            #     scale=1.0,
            #     tonemapping="aces",        # 可使用 aces 色调映射,使灯光更逼真
            #     exposure=1.1,              # 可调节曝光以控制亮度
            #     contrast=1.1,              # 可略微增加对比度,以获得更好的深度
            #     camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
            #     zoom_speed=0.5,            # 将调整变焦速度,以便更好地控制
            #     pan_speed=0.5,             # 将调整摇摄速度,以便更好地控制
            #     interactive=False          # 这样用户就可以与模型进行交互
            # )
            model_output = gr.Model3D(
                clear_color=(0.0, 0.0, 0.0, 0.0),  # 可调整背景颜色,以获得更好的对比度
                label="模型可视化",
                scale=1,
                camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
                zoom_speed=0.5,            # 将调整变焦速度,以便更好地控制
                pan_speed=0.5,             # 将调整摇摄速度,以便更好地控制
                interactive=False          # 这样用户就可以与模型进行交互
            )

    with gr.Row():
        with gr.Column():
            obj_file_output = gr.File(label="下载 .obj 文件")
            video_file_output = gr.File(label="下载视频")
        with gr.Column():
            video_output = gr.Video(label="360° 视频")

    # 清除输出
    def clear_model_viewer():
        """在加载新模型前重置 Gradio。"""
        return None, None

    # 清除输出的数据
    img_input.change(fn=clear_model_viewer, outputs=[model_output, video_output])

    # 生成模型和视频
    generate_mesh_button.click(fn=step_2_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
    generate_video_button.click(fn=step_3_generate_video, inputs=img_input, outputs=[video_file_output, video_output])

demo.launch(
    # auth=(os.environ.get('AUTH_USERNAME'), os.environ.get('AUTH_PASSWORD'))
)