File size: 12,036 Bytes
33f62f4
 
 
 
 
 
 
 
 
451754f
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073f668
33f62f4
 
 
073f668
 
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5864223
33f62f4
cfac815
33f62f4
 
 
 
 
cb249aa
3ddce45
f73d8e1
cb249aa
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
535d1a1
33f62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535d1a1
cfac815
535d1a1
33f62f4
 
 
cfac815
535d1a1
 
33f62f4
cfac815
535d1a1
 
85838a0
cfac815
535d1a1
 
33f62f4
 
 
4e69a90
33f62f4
5864223
33f62f4
 
0acd026
 
 
 
33f62f4
0acd026
33f62f4
0acd026
 
33f62f4
cfac815
 
33f62f4
5864223
33f62f4
cfac815
 
 
 
 
33f62f4
 
0acd026
33f62f4
cfac815
 
 
 
 
 
 
33f62f4
5864223
 
 
 
 
 
 
 
 
33f62f4
cfac815
 
 
5864223
cfac815
 
33f62f4
5864223
cfac815
 
 
33f62f4
5864223
 
85838a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import spaces
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
from gradio_litmodel3d import LitModel3D
import shutil

def find_cuda():
    # 检查 CUDA_HOME 或 CUDA_PATH 环境变量是否已设置
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # 在系统 PATH 中搜索 nvcc 可执行文件
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # 删除“bin/nvcc”部分,获取 CUDA 安装路径
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA 已安装在:{cuda_path}")
else:
    print("未找到已安装的 CUDA 路径")

# 从 HF 加载预训练模型
class LRMGeneratorWrapper:
    def __init__(self):
        self.config = AutoConfig.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
        self.model = AutoModel.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()

    def forward(self, image, camera):
        return self.model(image, camera)

model_wrapper = LRMGeneratorWrapper()

# 处理输入图像
def preprocess_image(image, source_size):
    session = new_session("isnet-general-use")
    rembg_remove = partial(remove, session=session)
    image = np.array(image)
    image = rembg_remove(image)
    mask = rembg_remove(image, only_mask=True)
    image = recenter(image, mask, border_ratio=0.20)
    image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
    if image.shape[1] == 4:
        image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
    image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
    image = torch.clamp(image, 0, 1)
    return image

def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
    fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
    cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
    width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
    fx, fy = fx / width, fy / height
    cx, cy = cx / width, cy / height
    return fx, fy, cx, cy

def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    return torch.cat([
        RT.reshape(-1, 12),
        fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
    ], dim=-1)

def _default_intrinsics():
    fx = fy = 384
    cx = cy = 256
    w = h = 512
    intrinsics = torch.tensor([
        [fx, fy],
        [cx, cy],
        [w, h],
    ], dtype=torch.float32)
    return intrinsics

def _default_source_camera(batch_size: int = 1):
    canonical_camera_extrinsics = torch.tensor([[
        [0, 0, 1, 1],
        [1, 0, 0, 0],
        [0, 1, 0, 0],
    ]], dtype=torch.float32)
    canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
    source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
    return source_camera.repeat(batch_size, 1)

def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
    """
    camera_position: (M, 3)
    look_at: (3)
    up_world: (3)
    return: (M, 3, 4)
    """
    # 默认情况下,从原点向上为 pos-z
    if look_at is None:
        look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
    if up_world is None:
        up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
    look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
    up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)

    z_axis = camera_position - look_at
    z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
    x_axis = torch.cross(up_world, z_axis)
    x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
    y_axis = torch.cross(z_axis, x_axis)
    y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
    extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
    return extrinsics

def compose_extrinsic_RT(RT: torch.Tensor):
    """
    从 RT 生成标准形式的外差矩阵。
    分批输入/输出。
    """
    return torch.cat([
        RT,
        torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
        ], dim=1)

def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
    """
    RT: (N, 3, 4)
    intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
    """
    E = compose_extrinsic_RT(RT)
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    I = torch.stack([
        torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
        torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
        torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
    ], dim=1)
    return torch.cat([
        E.reshape(-1, 16),
        I.reshape(-1, 9),
    ], dim=-1)

def _default_render_cameras(batch_size: int = 1):
    M = 80
    radius = 1.5
    elevation = 0
    camera_positions = []
    rand_theta = np.random.uniform(0, np.pi/180)
    elevation = np.radians(elevation)
    for i in range(M):
        theta = 2 * np.pi * i / M + rand_theta
        x = radius * np.cos(theta) * np.cos(elevation)
        y = radius * np.sin(theta) * np.cos(elevation)
        z = radius * np.sin(elevation)
        camera_positions.append([x, y, z])
    camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
    extrinsics = _center_looking_at_camera_pose(camera_positions)

    render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
    render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
    return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)

@spaces.GPU
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=False, fps=30):
    image = preprocess_image(image, source_size).to(model_wrapper.device)
    source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)

    with torch.no_grad():
        planes = model_wrapper.forward(image, source_camera)
        planes_pil_image = np.concatenate([
            np.concatenate([planes[0][1], planes[0][2]], axis=1),
            np.concatenate([planes[0][0], planes[0][0]], axis=1),
        ], axis=0)

        if export_mesh:
            grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
            vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
            vtx = vtx / (mesh_size - 1) * 2 - 1
            vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
            vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
            vtx_colors = (vtx_colors * 255).astype(np.uint8)
            mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)

            mesh_path = "xiaoxis_mesh.obj"
            mesh.export(mesh_path, 'obj')

            return planes_pil_image, mesh_path

        if export_video:
            render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
            frames = []
            chunk_size = 1
            for i in range(0, render_cameras.shape[1], chunk_size):
                frame_chunk = model_wrapper.model.synthesizer(
                    planes,
                    render_cameras[:, i:i + chunk_size],
                    render_size,
                    render_size,
                    0,
                    0
                )
                frames.append(frame_chunk['images_rgb'])

            frames = torch.cat(frames, dim=1)
            frames = frames.squeeze(0)
            frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)

            video_path = "xiaoxis_video.mp4"
            imageio.mimwrite(video_path, frames, fps=fps)

            return planes_pil_image, video_path

        return planes_pil_image, None

    return None, None

def step_1_generate_planes(image):
    planes_pil_image, _ = generate_mesh(image)
    return planes_pil_image

def step_2_generate_obj(image):
    planes_pil_image, mesh_path = generate_mesh(image, export_mesh=True)
    return planes_pil_image, mesh_path, mesh_path

def step_3_generate_video(image):
    planes_pil_image, video_path = generate_mesh(image, export_video=True)
    return planes_pil_image, video_path

# 从 assets 文件夹中设置示例文件,并限制最多读取 10 个文件
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))][:10]


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("""
        # Image Upscale Demo

        从单张图像生成三维点云并创建带色彩的 .obj 模型

        """)

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(type="pil", label="输入图像")
            examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=5)
            generate_planes_button = gr.Button("生成平面图")
            generate_mesh_button = gr.Button("生成模型")
            generate_video_button = gr.Button("生成视频")
        with gr.Column():
            planes_output = gr.Image(
                label="平面图",
                type="pil",
                interactive=False
            )
            model_output = LitModel3D(
                clear_color=[0, 0, 0, 0],  # 可调整背景颜色,以获得更好的对比度
                label="模型可视化",
                scale=1.0,
                tonemapping="aces",        # 可使用 aces 色调映射,使灯光更逼真
                exposure=1.1,              # 可调节曝光以控制亮度
                contrast=1.1,              # 可略微增加对比度,以获得更好的深度
                camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
                zoom_speed=0.5,            # 将调整变焦速度,以便更好地控制
                pan_speed=0.5,             # 将调整摇摄速度,以便更好地控制
                interactive=False          # 这样用户就可以与模型进行交互
            )

    with gr.Row():
        with gr.Column():
            video_file_output = gr.File(label="下载视频")
        with gr.Column():
            obj_file_output = gr.File(label="下载 .obj 文件")


    # 清除输出
    def clear_model_viewer():
        """在加载新模型前重置 Gradio。"""
        update_output = gr.update(value=None)
        return update_output, update_output

    # 首先清除输出的数据
    img_input.change(clear_model_viewer, inputs=None, outputs=[planes_output, model_output])

    # 然后生成模型和视频
    generate_planes_button.click(step_1_generate_planes, inputs=img_input, outputs=planes_output)
    generate_mesh_button.click(step_2_generate_obj, inputs=img_input, outputs=[planes_output, obj_file_output, model_output])
    generate_video_button.click(step_3_generate_video, inputs=img_input, outputs=[planes_output, video_file_output])

demo.launch(
    auth=(os.environ.get('AUTH_USERNAME'), os.environ.get('AUTH_PASSWORD'))
)