a96123155 commited on
Commit
4cbc75d
·
1 Parent(s): 0235b4d
Files changed (1) hide show
  1. app.py +0 -548
app.py DELETED
@@ -1,548 +0,0 @@
1
- import streamlit as st
2
-
3
-
4
- # Import necessary libraries
5
- import argparse
6
- import matplotlib
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- import os
10
- import pandas as pd
11
- import pathlib
12
- import random
13
- import scanpy as sc
14
- import seaborn as sns
15
- import torch
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- from argparse import Namespace
19
- from collections import Counter, OrderedDict
20
- from copy import deepcopy
21
- from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
22
- from esm.data import *
23
- from esm.model.esm2 import ESM2
24
- from sklearn import preprocessing
25
- from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
26
- precision_recall_fscore_support,
27
- precision_recall_curve, classification_report,
28
- roc_auc_score, average_precision_score,
29
- precision_score, recall_score, f1_score,
30
- accuracy_score)
31
- from sklearn.model_selection import StratifiedKFold
32
- from sklearn.utils import class_weight
33
- from scipy.stats import spearmanr, pearsonr
34
- from torch import nn
35
- from torch.nn import Linear
36
- from torch.nn.utils.rnn import pad_sequence
37
- from torch.utils.data import Dataset, DataLoader
38
- from torch.optim import lr_scheduler
39
- from tqdm import tqdm, trange
40
-
41
- # Set global variables
42
- matplotlib.rcParams.update({'font.size': 7})
43
- seed = 19961231
44
- random.seed(seed)
45
- np.random.seed(seed)
46
- torch.manual_seed(seed)
47
- torch.cuda.manual_seed(seed)
48
- torch.backends.cudnn.deterministic = True
49
- torch.backends.cudnn.benchmark = False
50
-
51
-
52
- global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
53
-
54
- epochs = 5
55
- layers = 6
56
- heads = 16
57
- embed_dim = 128
58
- batch_toks = 4096
59
- fc_node = 64
60
- dropout_prob = 0.5
61
- folds = 10
62
- repr_layers = [-1]
63
- include = ["mean"]
64
- truncate = True
65
- finetune = False
66
- return_contacts = False
67
- return_representation = False
68
-
69
- device = "cpu"
70
-
71
- global tok_to_idx, idx_to_tok, mask_toks_id
72
- alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
73
- assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
74
-
75
- # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
76
- tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
77
- idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
78
- print(tok_to_idx)
79
- mask_toks_id = 8
80
-
81
- global w1, w2, w3
82
- w1, w2, w3 = 1, 1, 100
83
-
84
- class CNN_linear(nn.Module):
85
- def __init__(self):
86
- super(CNN_linear, self).__init__()
87
-
88
- self.esm2 = ESM2(num_layers = layers,
89
- embed_dim = embed_dim,
90
- attention_heads = heads,
91
- alphabet = alphabet)
92
-
93
- self.dropout = nn.Dropout(dropout_prob)
94
- self.relu = nn.ReLU()
95
- self.flatten = nn.Flatten()
96
- self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
97
- self.output = nn.Linear(in_features = fc_node, out_features = 2)
98
-
99
- def predict(self, tokens):
100
-
101
- x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
102
- x_cls = x["representations"][layers][:, 0]
103
-
104
- o = self.fc(x_cls)
105
- o = self.relu(o)
106
- o = self.dropout(o)
107
- o = self.output(o)
108
-
109
- y_prob = torch.softmax(o, dim = 1)
110
- y_pred = torch.argmax(y_prob, dim = 1)
111
-
112
- if transform_type:
113
- y_prob_transformed = prob_transform(y_prob[:,1])
114
- return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
115
- else:
116
- return y_prob[:,1], y_pred, x['logits'], o[:,1]
117
-
118
- def forward(self, x1, x2):
119
- logit_1, repr_1 = self.predict(x1)
120
- logit_2, repr_2 = self.predict(x2)
121
- return (logit_1, logit_2), (repr_1, repr_2)
122
-
123
- def prob_transform(prob, **kwargs): # Logits
124
- """
125
- Transforms probability values based on the specified method.
126
-
127
- :param prob: torch.Tensor, the input probabilities to be transformed
128
- :param transform_type: str, the type of transformation to be applied
129
- :param kwargs: additional parameters for transformations
130
- :return: torch.Tensor, transformed probabilities
131
- """
132
-
133
- if transform_type == 'sigmoid':
134
- x0 = kwget('x0', 0.5)
135
- k = kwget('k', 10.0)
136
- prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
137
-
138
- elif transform_type == 'logit':
139
- # Adding a small value to avoid log(0) and log(1)
140
- prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
141
-
142
- elif transform_type == 'power_law':
143
- gamma = kwget('gamma', 2.0)
144
- prob_transformed = torch.pow(prob, gamma)
145
-
146
- elif transform_type == 'tanh':
147
- k = kwget('k', 2.0)
148
- prob_transformed = torch.tanh(k * prob)
149
-
150
- return prob_transformed
151
-
152
- def random_replace(sequence, continuous_replace=False):
153
- if end_nt_position == -1: end_nt_position = len(sequence)
154
- if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
155
- # raise ValueError("Invalid start/end positions")
156
- print("Invalid start/end positions")
157
- start_nt_position, end_nt_position = 0, -1
158
-
159
- # 将序列切片成三部分:替换区域前、替换区域、替换区域后
160
- pre_segment = sequence[:start_nt_position]
161
- target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
162
- post_segment = sequence[end_nt_position + 1:]
163
-
164
- if not continuous_replace:
165
- # 随机替换目标片段的mlm_tok_num个位置
166
- indices = random.sample(range(len(target_segment)), mlm_tok_num)
167
- for idx in indices:
168
- target_segment[idx] = '*'
169
- else:
170
- # 在目标片段连续替换mlm_tok_num个位置
171
- max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
172
- if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
173
- return target_segment
174
- start_idx = random.randint(0, max_start_idx)
175
- for idx in range(start_idx, start_idx + mlm_tok_num):
176
- target_segment[idx] = '*'
177
-
178
- # 合并并返回最终的序列
179
- return ''.join([pre_segment] + target_segment + [post_segment])
180
-
181
-
182
- def mlm_seq(seq):
183
- seq_token, masked_sequence_token = [7],[7]
184
- seq_token += [tok_to_idx[token] for token in seq]
185
-
186
- masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
187
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
188
-
189
- return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
190
-
191
- def batch_mlm_seq(seq_list, continuous_replace = False):
192
- batch_seq = []
193
- batch_masked_seq = []
194
- batch_seq_token_list = []
195
- batch_masked_seq_token_list = []
196
-
197
- for i, seq in enumerate(seq_list):
198
- seq_token, masked_seq_token = [7], [7]
199
- seq_token += [tok_to_idx[token] for token in seq]
200
-
201
- masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
202
- masked_seq_token += [tok_to_idx[token] for token in masked_seq]
203
-
204
- batch_seq.append(seq)
205
- batch_masked_seq.append(masked_seq)
206
-
207
- batch_seq_token_list.append(seq_token)
208
- batch_masked_seq_token_list.append(masked_seq_token)
209
-
210
- return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
211
-
212
- def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
213
- # Only remain the AGCT logits
214
- esm_logits = esm_logits[:,:,3:7]
215
- # Get the predicted tokens using argmax
216
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
217
-
218
- batch_size, seq_len, vocab_size = esm_logits.size()
219
- if exclude_low_prob: min_prob = 1 / vocab_size
220
- # Initialize an empty list to store the recovered sequences
221
- recovered_sequences, recovered_toks = [], []
222
-
223
- for i in range(batch_size):
224
- recovered_sequence_i, recovered_tok_i = [], []
225
- for j in range(seq_len):
226
- if masked_toks[i][j] == 8:
227
- print(i,j)
228
- ### Sample M recovery sequences using the logits
229
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
230
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
231
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
232
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
233
-
234
- ### 有放回抽样
235
- max_retries = 5
236
- retries = 0
237
- success = False
238
-
239
- while retries < max_retries and not success:
240
- try:
241
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
242
- success = True # 设置成功标志
243
- except ValueError as e:
244
- retries += 1
245
- print(f"Attempt {retries} failed with error: {e}")
246
- if retries >= max_retries:
247
- print("Max retries reached. Skipping this iteration.")
248
-
249
- ### recovery to sequence
250
- if retries < max_retries:
251
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
252
- recovery_seq = deepcopy(list(masked_seqs[i]))
253
- recovery_tok = deepcopy(masked_toks[i])
254
-
255
- recovery_tok[j] = idx
256
- recovery_seq[j-1] = idx_to_tok[idx]
257
-
258
- recovered_tok_i.append(recovery_tok)
259
- recovered_sequence_i.append(''.join(recovery_seq))
260
-
261
- recovered_sequences.extend(recovered_sequence_i)
262
- recovered_toks.extend(recovered_tok_i)
263
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
264
-
265
- def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
266
- # Only remain the AGCT logits
267
- esm_logits = esm_logits[:,:,3:7]
268
- # Get the predicted tokens using argmax
269
- predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
270
-
271
- batch_size, seq_len, vocab_size = esm_logits.size()
272
- if exclude_low_prob: min_prob = 1 / vocab_size
273
- # Initialize an empty list to store the recovered sequences
274
- recovered_sequences, recovered_toks = [], []
275
-
276
- for i in range(batch_size):
277
- recovered_sequence_i, recovered_tok_i = [], []
278
- recovered_masked_num = 0
279
- for j in range(seq_len):
280
- if masked_toks[i][j] == 8:
281
- ### Sample M recovery sequences using the logits
282
- recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
283
- recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
284
- if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
285
- recovery_probs /= recovery_probs.sum() # Normalize the probabilities
286
-
287
- ### 有放回抽样
288
- max_retries = 5
289
- retries = 0
290
- success = False
291
-
292
- while retries < max_retries and not success:
293
- try:
294
- recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
295
- success = True # 设置成功标志
296
- except ValueError as e:
297
- retries += 1
298
- print(f"Attempt {retries} failed with error: {e}")
299
- if retries >= max_retries:
300
- print("Max retries reached. Skipping this iteration.")
301
-
302
- ### recovery to sequence
303
-
304
- if recovered_masked_num == 0:
305
- if retries < max_retries:
306
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
307
- recovery_seq = deepcopy(list(masked_seqs[i]))
308
- recovery_tok = deepcopy(masked_toks[i])
309
-
310
- recovery_tok[j] = idx
311
- recovery_seq[j-1] = idx_to_tok[idx]
312
-
313
- recovered_tok_i.append(recovery_tok)
314
- recovered_sequence_i.append(''.join(recovery_seq))
315
-
316
- elif recovered_masked_num > 0:
317
- if retries < max_retries:
318
- for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
319
- for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
320
-
321
- recovery_seq_temp = list(recovery_seq)
322
- recovery_tok[j] = idx
323
- recovery_seq_temp[j-1] = idx_to_tok[idx]
324
-
325
- recovered_tok_i.append(recovery_tok)
326
- recovered_sequence_i.append(''.join(recovery_seq_temp))
327
-
328
- recovered_masked_num += 1
329
- recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
330
- recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
331
- recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
332
-
333
- recovered_sequences.extend(recovered_sequence_i)
334
- recovered_toks.extend(recovered_tok_i)
335
-
336
- recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
337
-
338
- return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
339
-
340
- def mismatched_positions(s1, s2):
341
- # 这个函数假定两个字符串的长度相同。
342
- """Return the number of positions where two strings differ."""
343
-
344
- # The number of mismatches will be the sum of positions where characters are not the same
345
- return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
346
-
347
- def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
348
- seen = {}
349
- unique_seqs = []
350
- unique_probs = []
351
- unique_logits = []
352
-
353
- for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
354
- if seq not in seen:
355
- unique_seqs.append(seq)
356
- unique_probs.append(prob)
357
- unique_logits.append(logit)
358
- seen[seq] = True
359
-
360
- return unique_seqs, unique_probs, unique_logits
361
-
362
- def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
363
- seen = {}
364
- unique_seqs = []
365
- unique_probs = []
366
-
367
- for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
368
- if seq not in seen:
369
- unique_seqs.append(seq)
370
- unique_probs.append(prob)
371
- seen[seq] = True
372
-
373
- return unique_seqs, unique_probs
374
-
375
- def mutated_seq(wt_seq, wt_label):
376
- wt_seq = '!'+ wt_seq
377
- wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
378
- wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
379
-
380
- print(f'Wild Type: Length = ', len(wt_seq), '\n', wt_seq)
381
- print(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
382
-
383
- # print(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
384
- pbar = tqdm(total=n_mut)
385
- mutated_seqs = []
386
- i = 1
387
- while i <= n_mut:
388
- if i == 1: seeds_ep = [wt_seq[1:]]
389
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
390
- for seed in seeds_ep:
391
- seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
392
-
393
- seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
394
- _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
395
- mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
396
- mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
397
-
398
- ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
399
- filtered_mut_seqs = []
400
- filtered_mut_probs = []
401
- filtered_mut_logits = []
402
- if mut_by_prob:
403
- for z in range(len(mut_seqs)):
404
- if mutate2stronger:
405
- if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
406
- filtered_mut_seqs.append(mut_seqs[z])
407
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
408
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
409
- else:
410
- if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
411
- filtered_mut_seqs.append(mut_seqs[z])
412
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
413
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
414
- else:
415
- for z in range(len(mut_seqs)):
416
- if mutate2stronger:
417
- if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
418
- filtered_mut_seqs.append(mut_seqs[z])
419
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
420
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
421
- else:
422
- if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
423
- filtered_mut_seqs.append(mut_seqs[z])
424
- filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
425
- filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
426
-
427
-
428
-
429
- ### Save
430
- seeds_next_ep.extend(filtered_mut_seqs)
431
- seeds_probs_next_ep.extend(filtered_mut_probs)
432
- seeds_logits_next_ep.extend(filtered_mut_logits)
433
- seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
434
-
435
- ### Sampling based on prob
436
- if len(seeds_next_ep) > n_sampling_designs_ep:
437
- seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
438
- seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
439
-
440
- seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
441
- seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
442
- seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
443
- seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
444
-
445
- mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
446
-
447
- seeds_ep = seeds_next_ep
448
- i += 1
449
- pbar.update(1)
450
- pbar.close()
451
-
452
- mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
453
- mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
454
- mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
455
- return mutated_seqs
456
-
457
- def read_raw(raw_input):
458
- ids = []
459
- sequences = []
460
-
461
- file = StringIO(raw_input)
462
- for record in SeqIO.parse(file, "fasta"):
463
-
464
- # 检查序列是否只包含A, G, C, T
465
- sequence = str(record.seq.back_transcribe()).upper()[-inp_len:]
466
- if not set(sequence).issubset(set("AGCT")):
467
- st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
468
- continue
469
-
470
- # 将符合条件的序列添加到列表中
471
- ids.append(record.id)
472
- sequences.append(sequence)
473
-
474
- return ids, sequences
475
-
476
- def predict_raw(raw_input):
477
- modelfile = 'v2.7_LeidenContrastive_best_model_fold0.pt'
478
- state_dict = torch.load(modelfile, map_location=torch.device(device))
479
- new_state_dict = OrderedDict()
480
-
481
- for k, v in state_dict.items():
482
- name = k.replace('module.','')
483
- new_state_dict[name] = v
484
-
485
- model = CNN_linear().to(device)
486
- model.load_state_dict(new_state_dict, strict = False)
487
- model.eval()
488
-
489
- # st.write('====Parse Input====')
490
- ids, seqs = read_raw(raw_input)
491
-
492
- # st.write('====Predict====')
493
- res_pd = pd.DataFrame()
494
- for wt_seq, wt_id in zip(seqs, ids):
495
- try:
496
- res = mutated_seq(wt_seq, wt_id)
497
- res_pd.append(res)
498
- except:
499
- st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
500
- # print(pred)
501
- return res_pd
502
-
503
-
504
- st.title("IRES-LM prediction and mutation")
505
-
506
- # Input sequence
507
- st.subheader("Input sequence")
508
-
509
- seq = st.text_area("FASTA format only", value="")
510
- st.subheader("Upload sequence file")
511
- uploaded = st.file_uploader("Sequence file in FASTA format")
512
-
513
- # augments
514
- global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
515
- output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
516
- start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
517
- end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
518
- mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
519
- transform_type = st.selectbox("Type of probability transformation",
520
- ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
521
- index=2)
522
- mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
523
- n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
524
- n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
525
- n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
526
- n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
527
- mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
528
-
529
- if not mut_by_prob and transform_type != '':
530
- print("--transform_type must be '' when --mut_by_prob is False")
531
- transform_type = ''
532
-
533
- # Run
534
- if st.button("Predict and Mutate"):
535
- if uploaded:
536
- result = predict_raw(uploaded.getvalue().decode())
537
- else:
538
- result = predict_raw(seq)
539
-
540
- result_file = result.to_csv(index=False)
541
- st.download_button("Download", result_file, file_name=output_filename+".csv")
542
- st.dataframe(result)
543
-
544
-
545
-
546
-
547
-
548
-