Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import spaces
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
# Load MedScholar model and tokenizer
|
7 |
model_name = "yasserrmd/MedScholar-1.5B"
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
# Chat function (streaming style)
|
12 |
@spaces.GPU
|
13 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(
|
16 |
-
model_name,
|
17 |
-
device_map="auto",
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
trust_remote_code=True
|
20 |
-
)
|
21 |
-
model.eval()
|
22 |
# Prepare the full conversation
|
23 |
conversation = [{"role": "system", "content": system_message}]
|
24 |
for user_msg, bot_reply in history:
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
import spaces
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
# Load MedScholar model and tokenizer
|
7 |
model_name = "yasserrmd/MedScholar-1.5B"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
device_map="auto",
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
trust_remote_code=True
|
14 |
+
)
|
15 |
+
model.eval()
|
16 |
|
17 |
|
18 |
# Chat function (streaming style)
|
19 |
@spaces.GPU
|
20 |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Prepare the full conversation
|
22 |
conversation = [{"role": "system", "content": system_message}]
|
23 |
for user_msg, bot_reply in history:
|