Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,528 Bytes
1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 efb082b 1dbadd4 878e6b8 1dbadd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import threading
import time
import torch
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
import spaces
MODEL_ID = os.getenv("MODEL_ID", "yasserrmd/SoftwareArchitecture-Instruct-v1")
# -------- Load model & tokenizer --------
print(f"Loading model: {MODEL_ID}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
low_cpu_mem_usage=True,
trust_remote_code=True,
)
model.eval()
# Ensure a pad token to avoid warnings on some bases
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
TITLE = "SoftwareArchitecture-Instruct v1 — Chat"
DESCRIPTION = (
"An instruction-tuned LLM for **software architecture**. "
"Built on LiquidAI/LFM2-1.2B, fine-tuned with the Software-Architecture dataset. "
"Designed for technical professionals: accurate, detailed, and on-topic answers."
)
SAMPLES = [
"Explain the API Gateway pattern and when to use it.",
"CQRS vs Event Sourcing — how do they relate, and when would you combine them?",
"Design a resilient payment workflow with retries, idempotency keys, and DLQ.",
"Rate limiting strategies for a public REST API: token bucket vs sliding window.",
"Multi-tenant SaaS: compare shared DB, schema, and dedicated DB for isolation.",
"Blue/green vs canary deployments — trade-offs and where each fits best.",
]
def format_history_as_messages(history):
"""
Convert Gradio chat history into OpenAI-style messages for apply_chat_template.
history: list of tuples (user, assistant)
"""
messages = []
for (u, a) in history:
if u:
messages.append({"role": "user", "content": u})
if a:
messages.append({"role": "assistant", "content": a})
return messages
@spaces.GPU
def stream_generate(messages, max_new_tokens, temperature, top_p, repetition_penalty, seed=None):
if seed is not None and seed >= 0:
torch.manual_seed(seed)
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
return_dict=True,
)
# Keep only what the model expects
allowed = {"input_ids", "attention_mask"} # no token_type_ids for causal LMs
inputs = {k: v.to(model.device) for k, v in inputs.items() if k in allowed}
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
repetition_penalty=float(repetition_penalty),
do_sample=temperature > 0,
use_cache=True,
streamer=streamer,
)
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
partial = ""
for chunk in streamer:
partial += chunk
yield partial
# -------- Gradio callbacks --------
@spaces.GPU
def chat_respond(user_msg, chat_history, max_new_tokens, temperature, top_p, repetition_penalty, seed):
if not user_msg or not user_msg.strip():
return gr.update(), chat_history
# Add user turn
chat_history = chat_history + [(user_msg, None)]
# Build messages from full history
messages = format_history_as_messages(chat_history)
# Stream assistant output
stream = stream_generate(
messages=messages,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
repetition_penalty=float(repetition_penalty),
seed=int(seed) if seed is not None else None,
)
# Yield progressive updates for the last assistant turn
final_assistant_text = ""
for chunk in stream:
final_assistant_text = chunk
yield gr.update(value=chat_history[:-1] + [(user_msg, final_assistant_text)]), ""
# Ensure final state returned
chat_history[-1] = (user_msg, final_assistant_text)
yield gr.update(value=chat_history), ""
def use_sample(sample, chat_history):
return sample, chat_history
def clear_chat():
return []
# -------- UI --------
CUSTOM_CSS = """
:root {
--brand: #0ea5e9; /* cyan-500 */
--ink: #0b1220;
}
.gradio-container {
font-family: Inter, ui-sans-serif, system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, "Apple Color Emoji","Segoe UI Emoji";
}
#title h1 {
font-weight: 700;
letter-spacing: -0.02em;
}
#desc {
opacity: 0.9;
}
footer {visibility: hidden}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft(primary_hue="cyan")) as demo:
with gr.Row():
with gr.Column():
gr.HTML(f"<div id='title'><h1>{TITLE}</h1></div>")
gr.Markdown(f"<div id='desc'>{DESCRIPTION}</div>", elem_id="desc")
with gr.Row():
with gr.Column(scale=4):
chat = gr.Chatbot(
label="SoftwareArchitecture-Instruct v1",
avatar_images=(None, None),
height=480,
bubble_full_width=False,
sanitize_html=False,
)
with gr.Row():
user_box = gr.Textbox(
placeholder="Ask about software architecture…",
show_label=False,
lines=3,
autofocus=True,
scale=4,
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Accordion("Generation Settings", open=False):
max_new_tokens = gr.Slider(64, 1024, value=256, step=16, label="Max new tokens")
temperature = gr.Slider(0.0, 1.5, value=0.3, step=0.05, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
repetition_penalty = gr.Slider(1.0, 1.5, value=1.05, step=0.01, label="Repetition penalty")
seed = gr.Number(value=-1, precision=0, label="Seed (-1 for random)")
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
# sample buttons
sample_dropdown = gr.Dropdown(choices=SAMPLES, label="Samples", value=None)
use_sample_btn = gr.Button("Use Sample")
with gr.Column(scale=2):
gr.Markdown("### Samples")
gr.Markdown("\n".join([f"• {s}" for s in SAMPLES]))
gr.Markdown("—\n**Tip:** Increase *Max new tokens* for longer, more complete answers.")
# Events
send_btn.click(
chat_respond,
inputs=[user_box, chat, max_new_tokens, temperature, top_p, repetition_penalty, seed],
outputs=[chat, user_box],
queue=True,
show_progress=True,
)
user_box.submit(
chat_respond,
inputs=[user_box, chat, max_new_tokens, temperature, top_p, repetition_penalty, seed],
outputs=[chat, user_box],
queue=True,
show_progress=True,
)
clear_btn.click(fn=clear_chat, outputs=chat)
use_sample_btn.click(use_sample, inputs=[sample_dropdown, chat], outputs=[user_box, chat])
gr.Markdown(
"—\nBuilt for engineers and architects. Base model: **LiquidAI/LFM2-1.2B** · Fine-tuned: **Software-Architecture** dataset."
)
if __name__ == "__main__":
demo.queue().launch()
|