Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,922 Bytes
528cf4a 3ad533a 03e7073 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 41155d1 3ad533a 41155d1 2565173 41155d1 2565173 41155d1 2565173 41155d1 2565173 41155d1 2565173 41155d1 528cf4a 41155d1 2565173 41155d1 2565173 41155d1 2565173 03e7073 2565173 03e7073 2565173 41155d1 2565173 3ad533a 2565173 3ad533a 2565173 03e7073 2565173 03e7073 2565173 03e7073 2565173 03e7073 2565173 41155d1 2565173 41155d1 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 2565173 3ad533a 2565173 3ad533a 2565173 3ad533a 2565173 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 2565173 528cf4a 2565173 528cf4a 488a214 5b95654 488a214 3ad533a 488a214 3ad533a 488a214 3ad533a 488a214 528cf4a 488a214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
from spaces import GPU
from datetime import datetime
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceDemo:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
self.model_path = model_path
self.device = device
self.inference_steps = inference_steps
self.is_generating = False
self.processor = None
self.model = None
self.available_voices = {}
self.load_model()
self.setup_voice_presets()
self.load_example_scripts()
def load_model(self):
print(f"Loading processor & model from {self.model_path}")
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map=self.device
)
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
def setup_voice_presets(self):
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
return
wav_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
for wav_file in wav_files:
name = os.path.splitext(wav_file)[0]
self.available_voices[name] = os.path.join(voices_dir, wav_file)
print(f"Voices loaded: {list(self.available_voices.keys())}")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.array([])
@GPU
def generate_podcast(self, num_speakers: int, script: str,
speaker_1: str = None, speaker_2: str = None,
speaker_3: str = None, speaker_4: str = None,
cfg_scale: float = 1.3):
"""Final audio generation only (no streaming)."""
self.is_generating = True
if not script.strip():
raise gr.Error("Please provide a script.")
if num_speakers < 1 or num_speakers > 4:
raise gr.Error("Number of speakers must be 1β4.")
# collect speakers
selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
for i, sp in enumerate(selected):
if not sp or sp not in self.available_voices:
raise gr.Error(f"Invalid speaker {i+1} selection.")
voice_samples = [self.read_audio(self.available_voices[sp]) for sp in selected]
if any(len(v) == 0 for v in voice_samples):
raise gr.Error("Failed to load one or more voice samples.")
# format script
lines = script.strip().split("\n")
formatted = []
for i, line in enumerate(lines):
line = line.strip()
if not line:
continue
if line.startswith("Speaker "):
formatted.append(line)
else:
sp_id = i % num_speakers
formatted.append(f"Speaker {sp_id}: {line}")
formatted_script = "\n".join(formatted)
# processor input
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt"
)
start = time.time()
outputs = self.model.generate(
**inputs,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
verbose=False
)
# --- handle model output robustly ---
if hasattr(outputs, "audio"):
audio = outputs.audio
elif hasattr(outputs, "audios") and outputs.audios:
audio = outputs.audios[0]
elif hasattr(outputs, "waveform"):
audio = outputs.waveform
elif hasattr(outputs, "waveforms") and outputs.waveforms:
audio = outputs.waveforms[0]
elif hasattr(outputs, "speech_outputs") and outputs.speech_outputs:
audio = outputs.speech_outputs[0]
else:
raise gr.Error(f"Model did not return audio in expected format. Got attributes: {dir(outputs)}")
# convert to numpy
if torch.is_tensor(audio):
audio = audio.float().cpu().numpy()
if audio.ndim > 1:
audio = audio.squeeze()
sample_rate = 24000
# ensure float32 for saving and returning
audio = audio.astype("float32")
# save automatically to disk
os.makedirs("outputs", exist_ok=True)
from datetime import datetime
import soundfile as sf
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_path = os.path.join("outputs", f"podcast_{timestamp}.wav")
sf.write(file_path, audio, sample_rate) # soundfile handles float32
print(f"πΎ Saved podcast to {file_path}")
total_dur = len(audio) / sample_rate
log = f"β
Generation complete in {time.time()-start:.1f}s, {total_dur:.1f}s audio\nSaved to {file_path}"
self.is_generating = False
return (sample_rate, audio), log
def load_example_scripts(self):
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
self.example_scripts = []
if not os.path.exists(examples_dir):
return
txt_files = sorted([f for f in os.listdir(examples_dir)
if f.lower().endswith('.txt')])
for txt_file in txt_files:
try:
with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
script_content = f.read().strip()
if script_content:
self.example_scripts.append([1, script_content])
except Exception as e:
print(f"Error loading {txt_file}: {e}")
def convert_to_16_bit_wav(data):
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
return (data * 32767).astype(np.int16)
def create_demo_interface(demo_instance: VibeVoiceDemo):
"""Create the Gradio interface (final audio only, no streaming)."""
# Custom CSS for high-end aesthetics
custom_css = """ ... """ # (keep your CSS unchanged)
with gr.Blocks(
title="VibeVoice - AI Podcast Generator",
css=custom_css,
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
)
) as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>ποΈ Vibe Podcasting</h1>
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
</div>
""")
with gr.Row():
# Left column - Settings
with gr.Column(scale=1, elem_classes="settings-card"):
gr.Markdown("### ποΈ **Podcast Settings**")
num_speakers = gr.Slider(
minimum=1, maximum=4, value=2, step=1,
label="Number of Speakers",
elem_classes="slider-container"
)
gr.Markdown("### π **Speaker Selection**")
available_speaker_names = list(demo_instance.available_voices.keys())
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
speaker_selections = []
for i in range(4):
default_value = default_speakers[i] if i < len(default_speakers) else None
speaker = gr.Dropdown(
choices=available_speaker_names,
value=default_value,
label=f"Speaker {i+1}",
visible=(i < 2),
elem_classes="speaker-item"
)
speaker_selections.append(speaker)
gr.Markdown("### βοΈ **Advanced Settings**")
with gr.Accordion("Generation Parameters", open=False):
cfg_scale = gr.Slider(
minimum=1.0, maximum=2.0, value=1.3, step=0.05,
label="CFG Scale (Guidance Strength)",
elem_classes="slider-container"
)
# Right column - Generation
with gr.Column(scale=2, elem_classes="generation-card"):
gr.Markdown("### π **Script Input**")
script_input = gr.Textbox(
label="Conversation Script",
placeholder="Enter your podcast script here...",
lines=12,
max_lines=20,
elem_classes="script-input"
)
with gr.Row():
random_example_btn = gr.Button(
"π² Random Example", size="lg",
variant="secondary", elem_classes="random-btn", scale=1
)
generate_btn = gr.Button(
"π Generate Podcast", size="lg",
variant="primary", elem_classes="generate-btn", scale=2
)
# Output section
gr.Markdown("### π΅ **Generated Podcast**")
complete_audio_output = gr.Audio(
label="Complete Podcast (Download)",
type="numpy",
elem_classes="audio-output complete-audio-section",
autoplay=False,
show_download_button=True,
visible=True
)
log_output = gr.Textbox(
label="Generation Log",
lines=8, max_lines=15,
interactive=False,
elem_classes="log-output"
)
# === logic ===
def update_speaker_visibility(num_speakers):
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
num_speakers.change(
fn=update_speaker_visibility,
inputs=[num_speakers],
outputs=speaker_selections
)
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
try:
speakers = speakers_and_params[:4]
cfg_scale = speakers_and_params[4]
audio, log = demo_instance.generate_podcast(
num_speakers=int(num_speakers),
script=script,
speaker_1=speakers[0],
speaker_2=speakers[1],
speaker_3=speakers[2],
speaker_4=speakers[3],
cfg_scale=cfg_scale
)
return audio, log
except Exception as e:
traceback.print_exc()
return None, f"β Error: {str(e)}"
generate_btn.click(
fn=generate_podcast_wrapper,
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
outputs=[complete_audio_output, log_output],
queue=True
)
def load_random_example():
import random
examples = getattr(demo_instance, "example_scripts", [])
if not examples:
examples = [
[2, "Speaker 0: Welcome to our AI podcast demo!\nSpeaker 1: Thanks, excited to be here!"]
]
num_speakers_value, script_value = random.choice(examples)
return num_speakers_value, script_value
random_example_btn.click(
fn=load_random_example,
inputs=[],
outputs=[num_speakers, script_input],
queue=False
)
gr.Markdown("### π **Example Scripts**")
examples = getattr(demo_instance, "example_scripts", []) or [
[1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
]
gr.Examples(
examples=examples,
inputs=[num_speakers, script_input],
label="Try these example scripts:"
)
return interface
def run_demo(
model_path: str = "microsoft/VibeVoice-1.5B",
device: str = "cuda",
inference_steps: int = 5,
share: bool = True,
):
set_seed(42)
demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
interface = create_demo_interface(demo_instance)
interface.queue().launch(
share=share,
server_name="0.0.0.0" if share else "127.0.0.1",
show_error=True,
show_api=False
)
if __name__ == "__main__":
run_demo()
|