File size: 13,922 Bytes
528cf4a
 
 
 
 
 
 
 
3ad533a
03e7073
528cf4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad533a
 
 
 
528cf4a
 
3ad533a
 
528cf4a
 
3ad533a
528cf4a
 
 
3ad533a
528cf4a
 
 
3ad533a
528cf4a
 
 
 
 
3ad533a
 
528cf4a
 
3ad533a
 
 
528cf4a
 
 
 
 
 
 
 
 
 
 
3ad533a
 
41155d1
 
 
 
3ad533a
41155d1
2565173
41155d1
 
2565173
41155d1
 
2565173
 
41155d1
 
 
 
2565173
41155d1
 
 
2565173
41155d1
 
 
 
 
 
 
 
 
528cf4a
41155d1
 
 
2565173
41155d1
 
 
 
 
 
 
2565173
41155d1
 
 
 
 
 
 
2565173
 
03e7073
 
2565173
03e7073
2565173
 
 
 
 
 
41155d1
2565173
 
 
3ad533a
 
 
 
2565173
3ad533a
2565173
 
 
 
03e7073
2565173
 
03e7073
 
2565173
 
03e7073
2565173
 
03e7073
2565173
41155d1
2565173
 
41155d1
528cf4a
 
 
 
 
3ad533a
 
528cf4a
 
3ad533a
528cf4a
3ad533a
 
528cf4a
3ad533a
 
 
 
 
 
 
 
 
 
 
528cf4a
 
2565173
3ad533a
2565173
 
3ad533a
2565173
 
 
 
 
 
 
3ad533a
2565173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528cf4a
3ad533a
528cf4a
 
3ad533a
 
 
528cf4a
 
 
 
 
 
 
3ad533a
 
528cf4a
 
3ad533a
 
528cf4a
 
 
2565173
 
528cf4a
 
2565173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528cf4a
 
488a214
 
 
5b95654
488a214
3ad533a
488a214
3ad533a
488a214
3ad533a
 
 
 
 
 
488a214
 
528cf4a
488a214
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
from spaces import GPU
from datetime import datetime

from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from transformers.utils import logging
from transformers import set_seed

logging.set_verbosity_info()
logger = logging.get_logger(__name__)


class VibeVoiceDemo:
    def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
        self.model_path = model_path
        self.device = device
        self.inference_steps = inference_steps
        self.is_generating = False
        self.processor = None
        self.model = None
        self.available_voices = {}
        self.load_model()
        self.setup_voice_presets()
        self.load_example_scripts()

    def load_model(self):
        print(f"Loading processor & model from {self.model_path}")
        self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
        self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
            self.model_path,
            torch_dtype=torch.bfloat16,
            device_map=self.device
        )
        self.model.eval()
        self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)

    def setup_voice_presets(self):
        voices_dir = os.path.join(os.path.dirname(__file__), "voices")
        if not os.path.exists(voices_dir):
            print(f"Warning: Voices directory not found at {voices_dir}")
            return
        wav_files = [f for f in os.listdir(voices_dir)
                     if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
        for wav_file in wav_files:
            name = os.path.splitext(wav_file)[0]
            self.available_voices[name] = os.path.join(voices_dir, wav_file)
        print(f"Voices loaded: {list(self.available_voices.keys())}")

    def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
        try:
            wav, sr = sf.read(audio_path)
            if len(wav.shape) > 1:
                wav = np.mean(wav, axis=1)
            if sr != target_sr:
                wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
            return wav
        except Exception as e:
            print(f"Error reading audio {audio_path}: {e}")
            return np.array([])

    @GPU
    def generate_podcast(self, num_speakers: int, script: str,
                         speaker_1: str = None, speaker_2: str = None,
                         speaker_3: str = None, speaker_4: str = None,
                         cfg_scale: float = 1.3):
        """Final audio generation only (no streaming)."""
        self.is_generating = True
    
        if not script.strip():
            raise gr.Error("Please provide a script.")
    
        if num_speakers < 1 or num_speakers > 4:
            raise gr.Error("Number of speakers must be 1–4.")
    
        # collect speakers
        selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
        for i, sp in enumerate(selected):
            if not sp or sp not in self.available_voices:
                raise gr.Error(f"Invalid speaker {i+1} selection.")
    
        voice_samples = [self.read_audio(self.available_voices[sp]) for sp in selected]
        if any(len(v) == 0 for v in voice_samples):
            raise gr.Error("Failed to load one or more voice samples.")
    
        # format script
        lines = script.strip().split("\n")
        formatted = []
        for i, line in enumerate(lines):
            line = line.strip()
            if not line:
                continue
            if line.startswith("Speaker "):
                formatted.append(line)
            else:
                sp_id = i % num_speakers
                formatted.append(f"Speaker {sp_id}: {line}")
        formatted_script = "\n".join(formatted)
    
        # processor input
        inputs = self.processor(
            text=[formatted_script],
            voice_samples=[voice_samples],
            padding=True,
            return_tensors="pt"
        )
    
        start = time.time()
        outputs = self.model.generate(
            **inputs,
            cfg_scale=cfg_scale,
            tokenizer=self.processor.tokenizer,
            verbose=False
        )
    
        # --- handle model output robustly ---
        if hasattr(outputs, "audio"):
            audio = outputs.audio
        elif hasattr(outputs, "audios") and outputs.audios:
            audio = outputs.audios[0]
        elif hasattr(outputs, "waveform"):
            audio = outputs.waveform
        elif hasattr(outputs, "waveforms") and outputs.waveforms:
            audio = outputs.waveforms[0]
        elif hasattr(outputs, "speech_outputs") and outputs.speech_outputs:
            audio = outputs.speech_outputs[0]
        else:
            raise gr.Error(f"Model did not return audio in expected format. Got attributes: {dir(outputs)}")
    
        # convert to numpy
        if torch.is_tensor(audio):
            audio = audio.float().cpu().numpy()
        if audio.ndim > 1:
            audio = audio.squeeze()
    
        sample_rate = 24000
        # ensure float32 for saving and returning
        audio = audio.astype("float32")
    
        # save automatically to disk
        os.makedirs("outputs", exist_ok=True)
        from datetime import datetime
        import soundfile as sf
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        file_path = os.path.join("outputs", f"podcast_{timestamp}.wav")
        sf.write(file_path, audio, sample_rate)   # soundfile handles float32
    
        print(f"πŸ’Ύ Saved podcast to {file_path}")
    
        total_dur = len(audio) / sample_rate
        log = f"βœ… Generation complete in {time.time()-start:.1f}s, {total_dur:.1f}s audio\nSaved to {file_path}"
    
        self.is_generating = False
        return (sample_rate, audio), log


    def load_example_scripts(self):
        examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
        self.example_scripts = []
        if not os.path.exists(examples_dir):
            return
        txt_files = sorted([f for f in os.listdir(examples_dir)
                            if f.lower().endswith('.txt')])
        for txt_file in txt_files:
            try:
                with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
                    script_content = f.read().strip()
                if script_content:
                    self.example_scripts.append([1, script_content])
            except Exception as e:
                print(f"Error loading {txt_file}: {e}")


def convert_to_16_bit_wav(data):
    if torch.is_tensor(data):
        data = data.detach().cpu().numpy()
    data = np.array(data)
    if np.max(np.abs(data)) > 1.0:
        data = data / np.max(np.abs(data))
    return (data * 32767).astype(np.int16)


def create_demo_interface(demo_instance: VibeVoiceDemo):
    """Create the Gradio interface (final audio only, no streaming)."""

    # Custom CSS for high-end aesthetics
    custom_css = """ ... """  # (keep your CSS unchanged)

    with gr.Blocks(
        title="VibeVoice - AI Podcast Generator",
        css=custom_css,
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="slate",
        )
    ) as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ™οΈ Vibe Podcasting</h1>
            <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
        </div>
        """)
        
        with gr.Row():
            # Left column - Settings
            with gr.Column(scale=1, elem_classes="settings-card"):
                gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
                
                num_speakers = gr.Slider(
                    minimum=1, maximum=4, value=2, step=1,
                    label="Number of Speakers",
                    elem_classes="slider-container"
                )
                
                gr.Markdown("### 🎭 **Speaker Selection**")
                available_speaker_names = list(demo_instance.available_voices.keys())
                default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']

                speaker_selections = []
                for i in range(4):
                    default_value = default_speakers[i] if i < len(default_speakers) else None
                    speaker = gr.Dropdown(
                        choices=available_speaker_names,
                        value=default_value,
                        label=f"Speaker {i+1}",
                        visible=(i < 2),
                        elem_classes="speaker-item"
                    )
                    speaker_selections.append(speaker)
                
                gr.Markdown("### βš™οΈ **Advanced Settings**")
                with gr.Accordion("Generation Parameters", open=False):
                    cfg_scale = gr.Slider(
                        minimum=1.0, maximum=2.0, value=1.3, step=0.05,
                        label="CFG Scale (Guidance Strength)",
                        elem_classes="slider-container"
                    )
            
            # Right column - Generation
            with gr.Column(scale=2, elem_classes="generation-card"):
                gr.Markdown("### πŸ“ **Script Input**")
                script_input = gr.Textbox(
                    label="Conversation Script",
                    placeholder="Enter your podcast script here...",
                    lines=12,
                    max_lines=20,
                    elem_classes="script-input"
                )
                
                with gr.Row():
                    random_example_btn = gr.Button(
                        "🎲 Random Example", size="lg",
                        variant="secondary", elem_classes="random-btn", scale=1
                    )
                    generate_btn = gr.Button(
                        "πŸš€ Generate Podcast", size="lg",
                        variant="primary", elem_classes="generate-btn", scale=2
                    )
                
                # Output section
                gr.Markdown("### 🎡 **Generated Podcast**")
                complete_audio_output = gr.Audio(
                    label="Complete Podcast (Download)",
                    type="numpy",
                    elem_classes="audio-output complete-audio-section",
                    autoplay=False,
                    show_download_button=True,
                    visible=True
                )
                
                log_output = gr.Textbox(
                    label="Generation Log",
                    lines=8, max_lines=15,
                    interactive=False,
                    elem_classes="log-output"
                )
        
        # === logic ===
        def update_speaker_visibility(num_speakers):
            return [gr.update(visible=(i < num_speakers)) for i in range(4)]
        
        num_speakers.change(
            fn=update_speaker_visibility,
            inputs=[num_speakers],
            outputs=speaker_selections
        )

        def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
            try:
                speakers = speakers_and_params[:4]
                cfg_scale = speakers_and_params[4]
                audio, log = demo_instance.generate_podcast(
                    num_speakers=int(num_speakers),
                    script=script,
                    speaker_1=speakers[0],
                    speaker_2=speakers[1],
                    speaker_3=speakers[2],
                    speaker_4=speakers[3],
                    cfg_scale=cfg_scale
                )
                return audio, log
            except Exception as e:
                traceback.print_exc()
                return None, f"❌ Error: {str(e)}"

        generate_btn.click(
            fn=generate_podcast_wrapper,
            inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
            outputs=[complete_audio_output, log_output],
            queue=True
        )

        def load_random_example():
            import random
            examples = getattr(demo_instance, "example_scripts", [])
            if not examples:
                examples = [
                    [2, "Speaker 0: Welcome to our AI podcast demo!\nSpeaker 1: Thanks, excited to be here!"]
                ]
            num_speakers_value, script_value = random.choice(examples)
            return num_speakers_value, script_value

        random_example_btn.click(
            fn=load_random_example,
            inputs=[],
            outputs=[num_speakers, script_input],
            queue=False
        )
        
        gr.Markdown("### πŸ“š **Example Scripts**")
        examples = getattr(demo_instance, "example_scripts", []) or [
            [1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
        ]
        gr.Examples(
            examples=examples,
            inputs=[num_speakers, script_input],
            label="Try these example scripts:"
        )

    return interface



def run_demo(
    model_path: str = "microsoft/VibeVoice-1.5B",
    device: str = "cuda",
    inference_steps: int = 5,
    share: bool = True,
):
    set_seed(42)
    demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
    interface = create_demo_interface(demo_instance)
    interface.queue().launch(
        share=share,
        server_name="0.0.0.0" if share else "127.0.0.1",
        show_error=True,
        show_api=False
    )


if __name__ == "__main__":
    run_demo()