Spaces:
Running
on
Zero
Running
on
Zero
Delete inference_from_file.py
Browse files- inference_from_file.py +0 -336
inference_from_file.py
DELETED
@@ -1,336 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from typing import List, Tuple, Union, Dict, Any
|
5 |
-
import time
|
6 |
-
import torch
|
7 |
-
|
8 |
-
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
|
9 |
-
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
|
10 |
-
from transformers.utils import logging
|
11 |
-
|
12 |
-
logging.set_verbosity_info()
|
13 |
-
logger = logging.get_logger(__name__)
|
14 |
-
|
15 |
-
|
16 |
-
class VoiceMapper:
|
17 |
-
"""Maps speaker names to voice file paths"""
|
18 |
-
|
19 |
-
def __init__(self):
|
20 |
-
self.setup_voice_presets()
|
21 |
-
|
22 |
-
# change name according to our preset wav file
|
23 |
-
new_dict = {}
|
24 |
-
for name, path in self.voice_presets.items():
|
25 |
-
|
26 |
-
if '_' in name:
|
27 |
-
name = name.split('_')[0]
|
28 |
-
|
29 |
-
if '-' in name:
|
30 |
-
name = name.split('-')[-1]
|
31 |
-
|
32 |
-
new_dict[name] = path
|
33 |
-
self.voice_presets.update(new_dict)
|
34 |
-
# print(list(self.voice_presets.keys()))
|
35 |
-
|
36 |
-
def setup_voice_presets(self):
|
37 |
-
"""Setup voice presets by scanning the voices directory."""
|
38 |
-
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
39 |
-
|
40 |
-
# Check if voices directory exists
|
41 |
-
if not os.path.exists(voices_dir):
|
42 |
-
print(f"Warning: Voices directory not found at {voices_dir}")
|
43 |
-
self.voice_presets = {}
|
44 |
-
self.available_voices = {}
|
45 |
-
return
|
46 |
-
|
47 |
-
# Scan for all WAV files in the voices directory
|
48 |
-
self.voice_presets = {}
|
49 |
-
|
50 |
-
# Get all .wav files in the voices directory
|
51 |
-
wav_files = [f for f in os.listdir(voices_dir)
|
52 |
-
if f.lower().endswith('.wav') and os.path.isfile(os.path.join(voices_dir, f))]
|
53 |
-
|
54 |
-
# Create dictionary with filename (without extension) as key
|
55 |
-
for wav_file in wav_files:
|
56 |
-
# Remove .wav extension to get the name
|
57 |
-
name = os.path.splitext(wav_file)[0]
|
58 |
-
# Create full path
|
59 |
-
full_path = os.path.join(voices_dir, wav_file)
|
60 |
-
self.voice_presets[name] = full_path
|
61 |
-
|
62 |
-
# Sort the voice presets alphabetically by name for better UI
|
63 |
-
self.voice_presets = dict(sorted(self.voice_presets.items()))
|
64 |
-
|
65 |
-
# Filter out voices that don't exist (this is now redundant but kept for safety)
|
66 |
-
self.available_voices = {
|
67 |
-
name: path for name, path in self.voice_presets.items()
|
68 |
-
if os.path.exists(path)
|
69 |
-
}
|
70 |
-
|
71 |
-
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
|
72 |
-
print(f"Available voices: {', '.join(self.available_voices.keys())}")
|
73 |
-
|
74 |
-
def get_voice_path(self, speaker_name: str) -> str:
|
75 |
-
"""Get voice file path for a given speaker name"""
|
76 |
-
# First try exact match
|
77 |
-
if speaker_name in self.voice_presets:
|
78 |
-
return self.voice_presets[speaker_name]
|
79 |
-
|
80 |
-
# Try partial matching (case insensitive)
|
81 |
-
speaker_lower = speaker_name.lower()
|
82 |
-
for preset_name, path in self.voice_presets.items():
|
83 |
-
if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
|
84 |
-
return path
|
85 |
-
|
86 |
-
# Default to first voice if no match found
|
87 |
-
default_voice = list(self.voice_presets.values())[0]
|
88 |
-
print(f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}")
|
89 |
-
return default_voice
|
90 |
-
|
91 |
-
|
92 |
-
def parse_txt_script(txt_content: str) -> Tuple[List[str], List[str]]:
|
93 |
-
"""
|
94 |
-
Parse txt script content and extract speakers and their text
|
95 |
-
Fixed pattern: Speaker 1, Speaker 2, Speaker 3, Speaker 4
|
96 |
-
Returns: (scripts, speaker_numbers)
|
97 |
-
"""
|
98 |
-
lines = txt_content.strip().split('\n')
|
99 |
-
scripts = []
|
100 |
-
speaker_numbers = []
|
101 |
-
|
102 |
-
# Pattern to match "Speaker X:" format where X is a number
|
103 |
-
speaker_pattern = r'^Speaker\s+(\d+):\s*(.*)$'
|
104 |
-
|
105 |
-
current_speaker = None
|
106 |
-
current_text = ""
|
107 |
-
|
108 |
-
for line in lines:
|
109 |
-
line = line.strip()
|
110 |
-
if not line:
|
111 |
-
continue
|
112 |
-
|
113 |
-
match = re.match(speaker_pattern, line, re.IGNORECASE)
|
114 |
-
if match:
|
115 |
-
# If we have accumulated text from previous speaker, save it
|
116 |
-
if current_speaker and current_text:
|
117 |
-
scripts.append(f"Speaker {current_speaker}: {current_text.strip()}")
|
118 |
-
speaker_numbers.append(current_speaker)
|
119 |
-
|
120 |
-
# Start new speaker
|
121 |
-
current_speaker = match.group(1).strip()
|
122 |
-
current_text = match.group(2).strip()
|
123 |
-
else:
|
124 |
-
# Continue text for current speaker
|
125 |
-
if current_text:
|
126 |
-
current_text += " " + line
|
127 |
-
else:
|
128 |
-
current_text = line
|
129 |
-
|
130 |
-
# Don't forget the last speaker
|
131 |
-
if current_speaker and current_text:
|
132 |
-
scripts.append(f"Speaker {current_speaker}: {current_text.strip()}")
|
133 |
-
speaker_numbers.append(current_speaker)
|
134 |
-
|
135 |
-
return scripts, speaker_numbers
|
136 |
-
|
137 |
-
|
138 |
-
def parse_args():
|
139 |
-
parser = argparse.ArgumentParser(description="VibeVoice Processor TXT Input Test")
|
140 |
-
parser.add_argument(
|
141 |
-
"--model_path",
|
142 |
-
type=str,
|
143 |
-
default="microsoft/VibeVoice-1.5b",
|
144 |
-
help="Path to the HuggingFace model directory",
|
145 |
-
)
|
146 |
-
|
147 |
-
parser.add_argument(
|
148 |
-
"--txt_path",
|
149 |
-
type=str,
|
150 |
-
default="demo/text_examples/1p_abs.txt",
|
151 |
-
help="Path to the txt file containing the script",
|
152 |
-
)
|
153 |
-
parser.add_argument(
|
154 |
-
"--speaker_names",
|
155 |
-
type=str,
|
156 |
-
nargs='+',
|
157 |
-
default='Andrew',
|
158 |
-
help="Speaker names in order (e.g., --speaker_names Andrew Ava 'Bill Gates')",
|
159 |
-
)
|
160 |
-
parser.add_argument(
|
161 |
-
"--output_dir",
|
162 |
-
type=str,
|
163 |
-
default="./outputs",
|
164 |
-
help="Directory to save output audio files",
|
165 |
-
)
|
166 |
-
parser.add_argument(
|
167 |
-
"--device",
|
168 |
-
type=str,
|
169 |
-
default="cuda" if torch.cuda.is_available() else "cpu",
|
170 |
-
help="Device for tensor tests",
|
171 |
-
)
|
172 |
-
parser.add_argument(
|
173 |
-
"--cfg_scale",
|
174 |
-
type=float,
|
175 |
-
default=1.3,
|
176 |
-
help="CFG (Classifier-Free Guidance) scale for generation (default: 1.3)",
|
177 |
-
)
|
178 |
-
|
179 |
-
return parser.parse_args()
|
180 |
-
|
181 |
-
def main():
|
182 |
-
args = parse_args()
|
183 |
-
|
184 |
-
# Initialize voice mapper
|
185 |
-
voice_mapper = VoiceMapper()
|
186 |
-
|
187 |
-
# Check if txt file exists
|
188 |
-
if not os.path.exists(args.txt_path):
|
189 |
-
print(f"Error: txt file not found: {args.txt_path}")
|
190 |
-
return
|
191 |
-
|
192 |
-
# Read and parse txt file
|
193 |
-
print(f"Reading script from: {args.txt_path}")
|
194 |
-
with open(args.txt_path, 'r', encoding='utf-8') as f:
|
195 |
-
txt_content = f.read()
|
196 |
-
|
197 |
-
# Parse the txt content to get speaker numbers
|
198 |
-
scripts, speaker_numbers = parse_txt_script(txt_content)
|
199 |
-
|
200 |
-
if not scripts:
|
201 |
-
print("Error: No valid speaker scripts found in the txt file")
|
202 |
-
return
|
203 |
-
|
204 |
-
print(f"Found {len(scripts)} speaker segments:")
|
205 |
-
for i, (script, speaker_num) in enumerate(zip(scripts, speaker_numbers)):
|
206 |
-
print(f" {i+1}. Speaker {speaker_num}")
|
207 |
-
print(f" Text preview: {script[:100]}...")
|
208 |
-
|
209 |
-
# Map speaker numbers to provided speaker names
|
210 |
-
speaker_name_mapping = {}
|
211 |
-
speaker_names_list = args.speaker_names if isinstance(args.speaker_names, list) else [args.speaker_names]
|
212 |
-
for i, name in enumerate(speaker_names_list, 1):
|
213 |
-
speaker_name_mapping[str(i)] = name
|
214 |
-
|
215 |
-
print(f"\nSpeaker mapping:")
|
216 |
-
for speaker_num in set(speaker_numbers):
|
217 |
-
mapped_name = speaker_name_mapping.get(speaker_num, f"Speaker {speaker_num}")
|
218 |
-
print(f" Speaker {speaker_num} -> {mapped_name}")
|
219 |
-
|
220 |
-
# Map speakers to voice files using the provided speaker names
|
221 |
-
voice_samples = []
|
222 |
-
actual_speakers = []
|
223 |
-
|
224 |
-
# Get unique speaker numbers in order of first appearance
|
225 |
-
unique_speaker_numbers = []
|
226 |
-
seen = set()
|
227 |
-
for speaker_num in speaker_numbers:
|
228 |
-
if speaker_num not in seen:
|
229 |
-
unique_speaker_numbers.append(speaker_num)
|
230 |
-
seen.add(speaker_num)
|
231 |
-
|
232 |
-
for speaker_num in unique_speaker_numbers:
|
233 |
-
speaker_name = speaker_name_mapping.get(speaker_num, f"Speaker {speaker_num}")
|
234 |
-
voice_path = voice_mapper.get_voice_path(speaker_name)
|
235 |
-
voice_samples.append(voice_path)
|
236 |
-
actual_speakers.append(speaker_name)
|
237 |
-
print(f"Speaker {speaker_num} ('{speaker_name}') -> Voice: {os.path.basename(voice_path)}")
|
238 |
-
|
239 |
-
# Prepare data for model
|
240 |
-
full_script = '\n'.join(scripts)
|
241 |
-
|
242 |
-
# Load processor
|
243 |
-
print(f"Loading processor & model from {args.model_path}")
|
244 |
-
processor = VibeVoiceProcessor.from_pretrained(args.model_path)
|
245 |
-
|
246 |
-
# Load model
|
247 |
-
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
248 |
-
args.model_path,
|
249 |
-
torch_dtype=torch.bfloat16,
|
250 |
-
device_map='cuda',
|
251 |
-
attn_implementation="flash_attention_2" # we only test flash_attention_2
|
252 |
-
)
|
253 |
-
|
254 |
-
model.eval()
|
255 |
-
model.set_ddpm_inference_steps(num_steps=10)
|
256 |
-
|
257 |
-
if hasattr(model.model, 'language_model'):
|
258 |
-
print(f"Language model attention: {model.model.language_model.config._attn_implementation}")
|
259 |
-
|
260 |
-
# Prepare inputs for the model
|
261 |
-
inputs = processor(
|
262 |
-
text=[full_script], # Wrap in list for batch processing
|
263 |
-
voice_samples=[voice_samples], # Wrap in list for batch processing
|
264 |
-
padding=True,
|
265 |
-
return_tensors="pt",
|
266 |
-
return_attention_mask=True,
|
267 |
-
)
|
268 |
-
print(f"Starting generation with cfg_scale: {args.cfg_scale}")
|
269 |
-
|
270 |
-
# Generate audio
|
271 |
-
start_time = time.time()
|
272 |
-
outputs = model.generate(
|
273 |
-
**inputs,
|
274 |
-
max_new_tokens=None,
|
275 |
-
cfg_scale=args.cfg_scale,
|
276 |
-
tokenizer=processor.tokenizer,
|
277 |
-
# generation_config={'do_sample': False, 'temperature': 0.95, 'top_p': 0.95, 'top_k': 0},
|
278 |
-
generation_config={'do_sample': False},
|
279 |
-
verbose=True,
|
280 |
-
)
|
281 |
-
generation_time = time.time() - start_time
|
282 |
-
print(f"Generation time: {generation_time:.2f} seconds")
|
283 |
-
|
284 |
-
# Calculate audio duration and additional metrics
|
285 |
-
if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
|
286 |
-
# Assuming 24kHz sample rate (common for speech synthesis)
|
287 |
-
sample_rate = 24000
|
288 |
-
audio_samples = outputs.speech_outputs[0].shape[-1] if len(outputs.speech_outputs[0].shape) > 0 else len(outputs.speech_outputs[0])
|
289 |
-
audio_duration = audio_samples / sample_rate
|
290 |
-
rtf = generation_time / audio_duration if audio_duration > 0 else float('inf')
|
291 |
-
|
292 |
-
print(f"Generated audio duration: {audio_duration:.2f} seconds")
|
293 |
-
print(f"RTF (Real Time Factor): {rtf:.2f}x")
|
294 |
-
else:
|
295 |
-
print("No audio output generated")
|
296 |
-
|
297 |
-
# Calculate token metrics
|
298 |
-
input_tokens = inputs['input_ids'].shape[1] # Number of input tokens
|
299 |
-
output_tokens = outputs.sequences.shape[1] # Total tokens (input + generated)
|
300 |
-
generated_tokens = output_tokens - input_tokens
|
301 |
-
|
302 |
-
print(f"Prefilling tokens: {input_tokens}")
|
303 |
-
print(f"Generated tokens: {generated_tokens}")
|
304 |
-
print(f"Total tokens: {output_tokens}")
|
305 |
-
|
306 |
-
# Save output
|
307 |
-
txt_filename = os.path.splitext(os.path.basename(args.txt_path))[0]
|
308 |
-
output_path = os.path.join(args.output_dir, f"{txt_filename}_generated.wav")
|
309 |
-
os.makedirs(args.output_dir, exist_ok=True)
|
310 |
-
|
311 |
-
processor.save_audio(
|
312 |
-
outputs.speech_outputs[0], # First (and only) batch item
|
313 |
-
output_path=output_path,
|
314 |
-
)
|
315 |
-
print(f"Saved output to {output_path}")
|
316 |
-
|
317 |
-
# Print summary
|
318 |
-
print("\n" + "="*50)
|
319 |
-
print("GENERATION SUMMARY")
|
320 |
-
print("="*50)
|
321 |
-
print(f"Input file: {args.txt_path}")
|
322 |
-
print(f"Output file: {output_path}")
|
323 |
-
print(f"Speaker names: {args.speaker_names}")
|
324 |
-
print(f"Number of unique speakers: {len(set(speaker_numbers))}")
|
325 |
-
print(f"Number of segments: {len(scripts)}")
|
326 |
-
print(f"Prefilling tokens: {input_tokens}")
|
327 |
-
print(f"Generated tokens: {generated_tokens}")
|
328 |
-
print(f"Total tokens: {output_tokens}")
|
329 |
-
print(f"Generation time: {generation_time:.2f} seconds")
|
330 |
-
print(f"Audio duration: {audio_duration:.2f} seconds")
|
331 |
-
print(f"RTF (Real Time Factor): {rtf:.2f}x")
|
332 |
-
|
333 |
-
print("="*50)
|
334 |
-
|
335 |
-
if __name__ == "__main__":
|
336 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|