Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -76,11 +76,9 @@ class VibeVoiceDemo:
|
|
76 |
|
77 |
if not script.strip():
|
78 |
raise gr.Error("Please provide a script.")
|
79 |
-
|
80 |
-
if num_speakers < 1 or num_speakers > 4:
|
81 |
raise gr.Error("Number of speakers must be 1β4.")
|
82 |
|
83 |
-
# collect speakers
|
84 |
selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
85 |
for i, sp in enumerate(selected):
|
86 |
if not sp or sp not in self.available_voices:
|
@@ -90,7 +88,6 @@ class VibeVoiceDemo:
|
|
90 |
if any(len(v) == 0 for v in voice_samples):
|
91 |
raise gr.Error("Failed to load one or more voice samples.")
|
92 |
|
93 |
-
# format script
|
94 |
lines = script.strip().split("\n")
|
95 |
formatted = []
|
96 |
for i, line in enumerate(lines):
|
@@ -104,7 +101,6 @@ class VibeVoiceDemo:
|
|
104 |
formatted.append(f"Speaker {sp_id}: {line}")
|
105 |
formatted_script = "\n".join(formatted)
|
106 |
|
107 |
-
# processor input
|
108 |
inputs = self.processor(
|
109 |
text=[formatted_script],
|
110 |
voice_samples=[voice_samples],
|
@@ -119,48 +115,52 @@ class VibeVoiceDemo:
|
|
119 |
tokenizer=self.processor.tokenizer,
|
120 |
verbose=False
|
121 |
)
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
127 |
audio = outputs.audios[0]
|
128 |
-
elif hasattr(outputs, "
|
129 |
-
audio = outputs.
|
130 |
elif hasattr(outputs, "waveforms") and outputs.waveforms:
|
131 |
audio = outputs.waveforms[0]
|
|
|
|
|
132 |
elif hasattr(outputs, "speech_outputs") and outputs.speech_outputs:
|
133 |
audio = outputs.speech_outputs[0]
|
134 |
else:
|
135 |
-
raise gr.Error(f"
|
|
|
|
|
|
|
136 |
|
137 |
-
# convert to numpy
|
138 |
if torch.is_tensor(audio):
|
139 |
audio = audio.float().cpu().numpy()
|
140 |
if audio.ndim > 1:
|
141 |
audio = audio.squeeze()
|
142 |
|
143 |
sample_rate = 24000
|
144 |
-
# ensure float32 for saving and returning
|
145 |
audio = audio.astype("float32")
|
146 |
|
147 |
-
# save automatically to disk
|
148 |
os.makedirs("outputs", exist_ok=True)
|
149 |
from datetime import datetime
|
150 |
import soundfile as sf
|
151 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
152 |
file_path = os.path.join("outputs", f"podcast_{timestamp}.wav")
|
153 |
-
sf.write(file_path, audio, sample_rate)
|
154 |
-
|
155 |
print(f"πΎ Saved podcast to {file_path}")
|
156 |
|
157 |
total_dur = len(audio) / sample_rate
|
158 |
-
log = f"β
Generation complete in {
|
159 |
|
160 |
self.is_generating = False
|
161 |
return (sample_rate, audio), log
|
162 |
|
163 |
|
|
|
164 |
def load_example_scripts(self):
|
165 |
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
166 |
self.example_scripts = []
|
|
|
76 |
|
77 |
if not script.strip():
|
78 |
raise gr.Error("Please provide a script.")
|
79 |
+
if not (1 <= num_speakers <= 4):
|
|
|
80 |
raise gr.Error("Number of speakers must be 1β4.")
|
81 |
|
|
|
82 |
selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
83 |
for i, sp in enumerate(selected):
|
84 |
if not sp or sp not in self.available_voices:
|
|
|
88 |
if any(len(v) == 0 for v in voice_samples):
|
89 |
raise gr.Error("Failed to load one or more voice samples.")
|
90 |
|
|
|
91 |
lines = script.strip().split("\n")
|
92 |
formatted = []
|
93 |
for i, line in enumerate(lines):
|
|
|
101 |
formatted.append(f"Speaker {sp_id}: {line}")
|
102 |
formatted_script = "\n".join(formatted)
|
103 |
|
|
|
104 |
inputs = self.processor(
|
105 |
text=[formatted_script],
|
106 |
voice_samples=[voice_samples],
|
|
|
115 |
tokenizer=self.processor.tokenizer,
|
116 |
verbose=False
|
117 |
)
|
118 |
+
gen_time = time.time() - start
|
119 |
|
120 |
+
print("DEBUG: outputs type:", type(outputs))
|
121 |
+
print("DEBUG: outputs dir:", dir(outputs))
|
122 |
+
|
123 |
+
audio = None
|
124 |
+
if hasattr(outputs, "audios") and outputs.audios:
|
125 |
audio = outputs.audios[0]
|
126 |
+
elif hasattr(outputs, "audio"):
|
127 |
+
audio = outputs.audio
|
128 |
elif hasattr(outputs, "waveforms") and outputs.waveforms:
|
129 |
audio = outputs.waveforms[0]
|
130 |
+
elif hasattr(outputs, "waveform"):
|
131 |
+
audio = outputs.waveform
|
132 |
elif hasattr(outputs, "speech_outputs") and outputs.speech_outputs:
|
133 |
audio = outputs.speech_outputs[0]
|
134 |
else:
|
135 |
+
raise gr.Error(f"No audio found in output. Check debug: {dir(outputs)}")
|
136 |
+
|
137 |
+
if audio is None:
|
138 |
+
raise gr.Error("Extracted audio is None β check model output structure.")
|
139 |
|
|
|
140 |
if torch.is_tensor(audio):
|
141 |
audio = audio.float().cpu().numpy()
|
142 |
if audio.ndim > 1:
|
143 |
audio = audio.squeeze()
|
144 |
|
145 |
sample_rate = 24000
|
|
|
146 |
audio = audio.astype("float32")
|
147 |
|
|
|
148 |
os.makedirs("outputs", exist_ok=True)
|
149 |
from datetime import datetime
|
150 |
import soundfile as sf
|
151 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
152 |
file_path = os.path.join("outputs", f"podcast_{timestamp}.wav")
|
153 |
+
sf.write(file_path, audio, sample_rate)
|
|
|
154 |
print(f"πΎ Saved podcast to {file_path}")
|
155 |
|
156 |
total_dur = len(audio) / sample_rate
|
157 |
+
log = f"β
Generation complete in {gen_time:.1f}s, {total_dur:.1f}s audio\nSaved to {file_path}"
|
158 |
|
159 |
self.is_generating = False
|
160 |
return (sample_rate, audio), log
|
161 |
|
162 |
|
163 |
+
|
164 |
def load_example_scripts(self):
|
165 |
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
166 |
self.example_scripts = []
|