Update app.py
Browse files
app.py
CHANGED
@@ -1,301 +1,96 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
import
|
6 |
-
import uvicorn
|
7 |
-
import base64
|
8 |
-
|
9 |
-
app = FastAPI()
|
10 |
|
11 |
# Chargement des modèles
|
12 |
-
|
13 |
-
|
14 |
-
"chest_classifier": pipeline("image-classification", model="codewithdark/vit-chest-xray")
|
15 |
-
}
|
16 |
-
|
17 |
-
models = load_models()
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
image
|
22 |
-
|
23 |
-
return f"data:image/png;base64,{img_str}"
|
24 |
-
|
25 |
-
COMMON_STYLES = """
|
26 |
-
body {
|
27 |
-
font-family: system-ui, -apple-system, sans-serif;
|
28 |
-
background: #f0f2f5;
|
29 |
-
margin: 0;
|
30 |
-
padding: 20px;
|
31 |
-
color: #1a1a1a;
|
32 |
-
}
|
33 |
-
::-webkit-scrollbar {
|
34 |
-
width: 8px;
|
35 |
-
height: 8px;
|
36 |
-
}
|
37 |
|
38 |
-
|
39 |
-
background: transparent;
|
40 |
-
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
max-width: 1200px;
|
49 |
-
margin: 0 auto;
|
50 |
-
background: white;
|
51 |
-
padding: 20px;
|
52 |
-
border-radius: 10px;
|
53 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
54 |
-
}
|
55 |
-
.button {
|
56 |
-
background: #2d2d2d;
|
57 |
-
color: white;
|
58 |
-
border: none;
|
59 |
-
padding: 12px 30px;
|
60 |
-
border-radius: 8px;
|
61 |
-
cursor: pointer;
|
62 |
-
font-size: 1.1em;
|
63 |
-
transition: all 0.3s ease;
|
64 |
-
position: relative;
|
65 |
-
}
|
66 |
-
.button:hover {
|
67 |
-
background: #404040;
|
68 |
-
}
|
69 |
-
@keyframes progress {
|
70 |
-
0% { width: 0; }
|
71 |
-
100% { width: 100%; }
|
72 |
-
}
|
73 |
-
@keyframes blink {
|
74 |
-
0% { opacity: 1; }
|
75 |
-
50% { opacity: 0; }
|
76 |
-
100% { opacity: 1; }
|
77 |
-
}
|
78 |
-
#loading {
|
79 |
-
display: none;
|
80 |
-
color: white;
|
81 |
-
margin-top: 10px;
|
82 |
-
animation: blink 1s infinite;
|
83 |
-
text-align: center;
|
84 |
-
}
|
85 |
-
.button-progress {
|
86 |
-
position: absolute;
|
87 |
-
bottom: 0;
|
88 |
-
left: 0;
|
89 |
-
height: 4px;
|
90 |
-
background: rgba(255, 255, 255, 0.5);
|
91 |
-
width: 0;
|
92 |
-
}
|
93 |
-
.button:active .button-progress {
|
94 |
-
animation: progress 2s linear forwards;
|
95 |
-
}
|
96 |
-
img {
|
97 |
-
max-width: 100%;
|
98 |
-
height: auto;
|
99 |
-
border-radius: 8px;
|
100 |
-
}
|
101 |
-
"""
|
102 |
-
|
103 |
-
@app.get("/", response_class=HTMLResponse)
|
104 |
-
async def main():
|
105 |
-
content = f"""
|
106 |
-
<!DOCTYPE html>
|
107 |
-
<html>
|
108 |
-
<head>
|
109 |
-
<title>Chest X-Ray Analysis</title>
|
110 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
111 |
-
<style>
|
112 |
-
{COMMON_STYLES}
|
113 |
-
|
114 |
-
.upload-section {{
|
115 |
-
background: #2d2d2d;
|
116 |
-
padding: 40px;
|
117 |
-
border-radius: 12px;
|
118 |
-
margin: 20px 0;
|
119 |
-
text-align: center;
|
120 |
-
border: 2px dashed #404040;
|
121 |
-
transition: all 0.3s ease;
|
122 |
-
color: white;
|
123 |
-
}}
|
124 |
-
.upload-section:hover {{
|
125 |
-
border-color: #555;
|
126 |
-
}}
|
127 |
-
input[type="file"] {{
|
128 |
-
font-size: 1.1em;
|
129 |
-
margin: 20px 0;
|
130 |
-
color: white;
|
131 |
-
}}
|
132 |
-
input[type="file"]::file-selector-button {{
|
133 |
-
font-size: 1em;
|
134 |
-
padding: 10px 20px;
|
135 |
-
border-radius: 8px;
|
136 |
-
border: 1px solid #404040;
|
137 |
-
background: #2d2d2d;
|
138 |
-
color: white;
|
139 |
-
transition: all 0.3s ease;
|
140 |
-
cursor: pointer;
|
141 |
-
}}
|
142 |
-
input[type="file"]::file-selector-button:hover {{
|
143 |
-
background: #404040;
|
144 |
-
}}
|
145 |
-
.preview-image {{
|
146 |
-
max-width: 300px;
|
147 |
-
margin: 20px auto;
|
148 |
-
display: none;
|
149 |
-
}}
|
150 |
-
</style>
|
151 |
-
</head>
|
152 |
-
<body>
|
153 |
-
<div class="container">
|
154 |
-
<div class="upload-section">
|
155 |
-
<form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';">
|
156 |
-
<div>
|
157 |
-
<input type="file" name="file" accept="image/*" required
|
158 |
-
onchange="document.getElementById('preview').src = window.URL.createObjectURL(this.files[0]);
|
159 |
-
document.getElementById('preview').style.display = 'block';">
|
160 |
-
</div>
|
161 |
-
<img id="preview" class="preview-image" src="" alt="Preview">
|
162 |
-
<button type="submit" class="button">
|
163 |
-
Analyze X-Ray
|
164 |
-
<div class="button-progress"></div>
|
165 |
-
</button>
|
166 |
-
<div id="loading">Loading...</div>
|
167 |
-
</form>
|
168 |
-
</div>
|
169 |
-
</div>
|
170 |
-
</body>
|
171 |
-
</html>
|
172 |
-
"""
|
173 |
-
return content
|
174 |
|
175 |
-
|
176 |
-
async def analyze_file(file: UploadFile = File(...)):
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
|
184 |
-
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
<title>Results</title>
|
191 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
192 |
-
<style>
|
193 |
-
{COMMON_STYLES}
|
194 |
-
|
195 |
-
.results-grid {{
|
196 |
-
display: grid;
|
197 |
-
grid-template-columns: 1fr 1fr;
|
198 |
-
gap: 20px;
|
199 |
-
margin-top: 20px;
|
200 |
-
}}
|
201 |
-
.result-box {{
|
202 |
-
background: white;
|
203 |
-
padding: 20px;
|
204 |
-
border-radius: 12px;
|
205 |
-
margin: 10px 0;
|
206 |
-
border: 1px solid #e9ecef;
|
207 |
-
}}
|
208 |
-
.score-high {{
|
209 |
-
color: #0066cc;
|
210 |
-
font-weight: bold;
|
211 |
-
}}
|
212 |
-
.score-medium {{
|
213 |
-
color: #ffa500;
|
214 |
-
font-weight: bold;
|
215 |
-
}}
|
216 |
-
.back-button {{
|
217 |
-
display: inline-block;
|
218 |
-
text-decoration: none;
|
219 |
-
margin-top: 20px;
|
220 |
-
}}
|
221 |
-
h3 {{
|
222 |
-
color: #0066cc;
|
223 |
-
margin-top: 0;
|
224 |
-
}}
|
225 |
-
@media (max-width: 768px) {{
|
226 |
-
.results-grid {{
|
227 |
-
grid-template-columns: 1fr;
|
228 |
-
}}
|
229 |
-
}}
|
230 |
-
</style>
|
231 |
-
</head>
|
232 |
-
<body>
|
233 |
-
<div class="container">
|
234 |
-
<div class="results-grid">
|
235 |
-
<div class="result-box">
|
236 |
-
<h3>Analysis Results</h3>
|
237 |
-
"""
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
<div>
|
243 |
-
<span class="{confidence_class}">{pred['score']:.1%}</span> -
|
244 |
-
{pred['label']}
|
245 |
-
</div>
|
246 |
-
"""
|
247 |
-
|
248 |
-
results_html += f"""
|
249 |
-
</div>
|
250 |
-
<div class='result-box'>
|
251 |
-
<h3>X-Ray Image</h3>
|
252 |
-
<img src="{result_image_b64}" alt="Analyzed X-Ray">
|
253 |
-
</div>
|
254 |
-
</div>
|
255 |
-
|
256 |
-
<a href="/" class="button back-button">
|
257 |
-
← Back
|
258 |
-
<div class="button-progress"></div>
|
259 |
-
</a>
|
260 |
-
</div>
|
261 |
-
</body>
|
262 |
-
</html>
|
263 |
-
"""
|
264 |
-
|
265 |
-
return results_html
|
266 |
|
|
|
267 |
except Exception as e:
|
268 |
-
return f""
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
299 |
|
300 |
-
|
301 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Chargement des modèles
|
8 |
+
classifier = pipeline("image-classification", model="abhishek/chest-xray-classification")
|
9 |
+
detector = pipeline("object-detection", model="nickysam/detect-thorax-anomaly-75acc")
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
def draw_boxes(image, predictions):
|
12 |
+
# Convertir l'image numpy en PIL si nécessaire
|
13 |
+
if isinstance(image, np.ndarray):
|
14 |
+
image = Image.fromarray(np.uint8(image))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
draw = ImageDraw.Draw(image)
|
|
|
|
|
17 |
|
18 |
+
# Dessiner les boîtes de détection
|
19 |
+
for pred in predictions:
|
20 |
+
box = pred['box']
|
21 |
+
score = pred['score']
|
22 |
+
label = pred['label']
|
23 |
+
|
24 |
+
# Coordonnées de la boîte
|
25 |
+
x1, y1 = box['xmin'], box['ymin']
|
26 |
+
x2, y2 = box['xmax'], box['ymax']
|
27 |
+
|
28 |
+
# Couleur en fonction du score
|
29 |
+
color = (255, 0, 0) if score > 0.7 else (255, 165, 0)
|
30 |
+
|
31 |
+
# Dessiner le rectangle
|
32 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
|
33 |
+
|
34 |
+
# Ajouter le label et le score
|
35 |
+
label_text = f"{label}: {score:.1%}"
|
36 |
+
draw.text((x1, y1-15), label_text, fill=color)
|
37 |
|
38 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def analyze_xray(image):
|
|
|
41 |
try:
|
42 |
+
# Classification générale
|
43 |
+
classifications = classifier(image)
|
44 |
|
45 |
+
# Détection des anomalies
|
46 |
+
detections = detector(image)
|
47 |
|
48 |
+
# Dessiner les boîtes sur l'image
|
49 |
+
annotated_image = draw_boxes(image, detections)
|
50 |
|
51 |
+
# Préparer les résultats
|
52 |
+
results = "Classifications:\n"
|
53 |
+
for pred in classifications:
|
54 |
+
results += f"{pred['label']}: {pred['score']:.1%}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
results += "\nDetected Anomalies:\n"
|
57 |
+
for det in detections:
|
58 |
+
results += f"{det['label']}: {det['score']:.1%}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
return annotated_image, results
|
61 |
except Exception as e:
|
62 |
+
return image, f"Error: {str(e)}"
|
63 |
+
|
64 |
+
# Interface Gradio
|
65 |
+
with gr.Blocks(theme=gr.themes.Soft(
|
66 |
+
primary_hue="gray",
|
67 |
+
secondary_hue="gray",
|
68 |
+
)) as demo:
|
69 |
+
gr.Markdown("""
|
70 |
+
# Chest X-Ray Analysis
|
71 |
+
This application analyzes chest X-rays to:
|
72 |
+
1. Classify general conditions
|
73 |
+
2. Detect and locate specific anomalies
|
74 |
+
""")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
input_image = gr.Image(label="Upload X-Ray Image", type="pil")
|
79 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
80 |
+
|
81 |
+
with gr.Column():
|
82 |
+
output_image = gr.Image(label="Analyzed Image")
|
83 |
+
output_text = gr.Textbox(label="Results", lines=10)
|
84 |
+
|
85 |
+
analyze_btn.click(
|
86 |
+
fn=analyze_xray,
|
87 |
+
inputs=[input_image],
|
88 |
+
outputs=[output_image, output_text]
|
89 |
+
)
|
90 |
+
|
91 |
+
gr.Markdown("""
|
92 |
+
Note: This tool is for demonstration purposes only and should not be used for medical diagnosis.
|
93 |
+
""")
|
94 |
|
95 |
+
# Lancement de l'application
|
96 |
+
demo.launch()
|